位置采集和无线通信技术的进步使得时空(ST)数据的可用性更加广泛。深度神经网络(DNNs)已成功地应用于各种问题,如计算机视觉、语音识别、自然语言理解。与这些领域不同,ST数据具有独特的空间属性(即地理层次和距离)和时间属性(即紧密程度、时期和趋势)。同时获得所有这些ST特性是非常具有挑战性的。