位置采集和无线通信技术的进步使得时空(ST)数据的可用性更加广泛。深度神经网络(DNNs)已成功地应用于各种问题,如计算机视觉、语音识别、自然语言理解。与这些领域不同,ST数据具有独特的空间属性(即地理层次和距离)和时间属性(即紧密程度、时期和趋势)。同时获得所有这些ST特性是非常具有挑战性的。

成为VIP会员查看完整内容
101

相关内容

《自监督学习》最新报告,45页ppt
专知会员服务
74+阅读 · 2022年9月14日
图信号处理导论,85页ppt
专知会员服务
52+阅读 · 2022年9月11日
时空人工智能及其在智能交通中的应用,43页ppt
专知会员服务
90+阅读 · 2022年9月8日
【NAACL2021】长序列自然语言处理, 250页ppt
专知会员服务
61+阅读 · 2021年6月7日
【WSDM2021-Ttutorial】深度学习异常检测,111页ppt
专知会员服务
150+阅读 · 2021年3月10日
最新《域自适应视觉应用》ECCV2020教程,43页PPT
专知会员服务
25+阅读 · 2020年11月5日
【PKDD2020教程】机器学习不确定性,附88页ppt与视频
专知会员服务
93+阅读 · 2020年10月18日
商业数据分析,39页ppt
专知会员服务
154+阅读 · 2020年6月2日
少标签数据学习,54页ppt
专知会员服务
191+阅读 · 2020年5月22日
《自监督学习》最新报告,45页ppt
专知
1+阅读 · 2022年9月14日
计算机视觉中深度迁移学习,165页PPT
专知
20+阅读 · 2019年8月18日
基于深度学习的文本生成【附217页PPT下载】
专知
33+阅读 · 2018年11月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
How stable are Transferability Metrics evaluations?
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月18日
Arxiv
21+阅读 · 2018年8月30日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
《自监督学习》最新报告,45页ppt
专知会员服务
74+阅读 · 2022年9月14日
图信号处理导论,85页ppt
专知会员服务
52+阅读 · 2022年9月11日
时空人工智能及其在智能交通中的应用,43页ppt
专知会员服务
90+阅读 · 2022年9月8日
【NAACL2021】长序列自然语言处理, 250页ppt
专知会员服务
61+阅读 · 2021年6月7日
【WSDM2021-Ttutorial】深度学习异常检测,111页ppt
专知会员服务
150+阅读 · 2021年3月10日
最新《域自适应视觉应用》ECCV2020教程,43页PPT
专知会员服务
25+阅读 · 2020年11月5日
【PKDD2020教程】机器学习不确定性,附88页ppt与视频
专知会员服务
93+阅读 · 2020年10月18日
商业数据分析,39页ppt
专知会员服务
154+阅读 · 2020年6月2日
少标签数据学习,54页ppt
专知会员服务
191+阅读 · 2020年5月22日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员