自监督学习是指从数据本身产生某种形式的标签并训练神经网络,用来解决某些特定任务或者学习通用的图像、视频、语言的特征表达。在学术界,自监督学习被证明可以解决光流预测、深度估计、场景遮挡等问题,不需要额外的人工标签。另外,基于自监督学习的无监督表征学习近年来也获得了飞速发展,大有超越有监督表征学习的趋势。

成为VIP会员查看完整内容
74

相关内容

【牛津大学博士论文】自监督学习视频理解,143页pdf
专知会员服务
39+阅读 · 2022年10月11日
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
【牛津大学&DeepMind】自监督学习教程,141页ppt
专知会员服务
179+阅读 · 2020年5月29日
【领域报告】小样本学习年度进展|VALSE2018
深度学习大讲堂
26+阅读 · 2018年6月14日
计算机视觉专题分享总结(附PPT)
机器学习读书会
42+阅读 · 2017年7月6日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月21日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
15+阅读 · 2019年9月11日
VIP会员
相关主题
相关VIP内容
相关基金
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员