面向知识图谱的知识推理旨在通过已有的知识图谱事实,去推断新的事实,进而实现知识库的补全。近年来,尽管基于分布式表示学习的方法在推理任务上取得了巨大的成功,但是他们的黑盒属性使得模型无法为预测出的事实做出解释。所以,如何设计用户可理解、可信赖的推理模型成为了人们关注的问题。本文从可解释性的基本概念出发,系统梳理了面向知识图谱的可解释知识推理的相关工作,具体介绍了事前可解释推理模型和事后可解释推理模型的研究进展;根据可解释范围的大小,本文将事前可解释推理模型进一步细分为全局可解释的推理和局部可解释的推理;在事后解释模型中,本文回顾了推理模型的代表方法,并详细介绍提供事后解释的两类解释方法。此外,本文还总结了可解释知识推理在医疗、金融领域的应用。随后,本文对可解释知识推理的现状进行概述,最后展望了可解释知识推理的未来发展方向,以期进一步推动可解释推理的发展和应用。

http://www.jos.org.cn/jos/article/abstract/6522

知识图谱(Knowledge Graph)本质是一种语义网络,通常用 (头实体,关系,尾实体)/ ( ,r, t) h 这样 的三元组来表达事物属性以及事物之间的语义关系。自谷歌提出知识图谱概念以来,知识图谱已经为智能 问答、对话生成、个性化推荐等多个 NLP 任务领域提供了有力支撑。虽然目前的知识图谱中存在大量的实 体和事实数据,但是这样大规模的数据仍然不完整,大量缺失的三元组严重限制了这些下游任务的性能。知识推理,这一旨在根据一定的推理机制去预测图谱中缺失三元组的任务,也吸引了学术界越来越多的目光。

早在 2013 年,Li 等人[1] 提出利用表示学习的方法去做知识推理,通过将实体和关系映射到低维连续 的向量空间,将推理预测任务转化为实体与关系所关联的简单的向量/矩阵操作。鉴于该方法的自由度高、 可计算性好、推理效率高等优点,该类方法在近几年得到了广泛关注和发展,并且广泛的应用在推荐系统、 对话生成等互联网场景。在这些场景下,研究者们更多的关注如何提高知识推理的性能,忽略知识推理发 生错误时的风险问题。即便推理模型在这些场景下产生错误推理时,通常来说,并不会招致非常严重的后果。然而,在当今人工智能技术应用的大趋势下,知识推理不仅可以应用在上述互联网场景,而且越来越 多的被应用在和人类的生产生活息息相关的一些领域(例如,智能医疗[98,99,100]、军事[112] 、金融[90,111]、交 通运输[113,114]),这些领域往往对模型的安全性能要求较高,风险高度敏感。例如,在医疗领域,推理的可 靠性会关系到人的生命安全。通常来说,在这些领域,仅仅获得预测结果是不够的,模型还必须解释是怎 么获得这个预测的,来建立用户和推理模型之间的信任。

随着深度学习的发展,知识推理方法的模型结构越来越复杂,仅仅一个网络就可能包含几百个神经元、 百万个参数。尽管这些推理模型在速度、稳定性、可移植性、准确性等诸多方面优于人类,但由于用户无 法对这类模型里的参数、结构、特征产生直观理解,对于模型的决策过程和模型的推理依据知之甚少,对 于模型的决策过程知之甚少,不知道它何时会出现错误,在风险敏感的领域中,用户仍然无法信任模型的 预测结果。因此,为了建立用户和推理模型之间的信任,平衡模型准确率和可解释性之间的矛盾,可解释 性知识推理在近几年的科研会议上成为关注热点。

尽管有很多学者对知识推理领域进行了深入的研究,并从不同的角度(如分布式表示角度[120] 、图神 经网络角度[121] 、神经-符号角度[119] 等)对推理模型进行梳理和总结。然而,在推理模型的可解释性方面 却缺少深入的对比和总结。为了促进可解释知识推理的研究与发展,本文对现有的可解释推理模型进行了 系统梳理、总结和展望。本文首先阐述可解释性的定义和可解释性在推理任务中的必要性,并介绍常见的 可解释模型划分标准;然后,根据解释产生的方式,对现有的可解释知识推理模型进行总结和归类,并讨 论相关方法的局限性;接着,简单介绍可解释知识推理在金融领域和医疗领域的应用。最后,本文讨论可 解释知识推理面临的挑战以及可能的研究方向。

1 可解释的知识推理

在详细介绍现有的可解释知识推理模型之前,首先介绍知识推理的基本概念,接着对什么是可解释性 (Interpretability),以及为什么要在推理任务中注重可解释性进行介绍,最后对本文的划分标准做简要说明。

1.1 知识推理的基本概念

2012 年,谷歌正式提出知识图谱的概念,用于改善自身的搜索质量。知识图谱通常用 ( ,r, t) h 这样 的三元组表达实体及其实体之间的语义关系,其中 h 代表头实体, r 代表实体之间的关系, t 代表尾实体。例如(詹姆斯·卡梅隆,执导,泰坦尼克号)即是一个三元组,其中头实体和尾实体分别为“詹姆斯·卡梅隆” 和“泰坦尼克号”,“执导”是两个实体之间的关系。代表性的知识图谱,如 DBpedia[108] 、Freebase[53] 、 Wikidata[55] 、YAGO[107] 等,虽然包含数以亿计的三元组,但是却面临非常严重的数据缺失问题。据 2014 年的统计,在 Freebase 知识库中,有 75%的人没有国籍信息,DBpedia 中 60% 的人缺少没有出生地信息 [125] 。知识图谱的不完整性严重制约了知识图谱在下游任务中的效能发挥。因此,如何让机器自动基于知 识图谱中的已有知识进行推理,从而补全和完善知识图谱,成为了工业界和学术界都亟待解决的问题。

总的来说,面向知识图谱的知识推理实质上是指利用机器学习或深度学习的方法,根据知识图谱中已 有的三元组去推理出缺失的三元组,从而对知识图谱进行补充和完善。例如,已知(詹姆斯·卡梅隆,执导, 泰坦尼克号)和(莱昂纳多·迪卡普里奥,出演,泰坦尼克号),可以得到(詹姆斯·卡梅隆,合作,莱昂纳 多·迪卡普里奥)。知识推理主要包含知识图谱去噪[12] 和知识图谱补全(又称之为链接预测)[1,27,94,95]两个 任务[117] ,其中,知识图谱去噪任务专注于知识图谱内部已有三元组正确性的判断;而知识图谱补全专注 于扩充现有的图谱。根据要推理元素的不同,知识图谱补全任务可以进一步细分为实体预测和关系预测。其中,实体预测是指给定查询 ( ,r,?) h ,利用已有事实的关系,推理出另一个实体并由此构成完整三元组, 同理,关系预测则是指给定查询 ( ,?, t) h ,推理给定的头尾实体之间的关系。由于知识图谱中大多数三元组 都是正确的,知识图谱去噪任务通常采用对已有三元组进行联合建模并进一步判断特定三元组是否成立的 方法。在这种情况下,知识图谱补全任务可以转化为知识图谱去噪任务[123,124]。为此,在下面的内容里,本 文以知识图谱补全任务为中心,对相关的可解释性方法进行梳理和总结。

1.2 可解释性及其在知识推理中的必要性

目前学术界和工业界对于可解释性没有明确的数学定义[62] ,不同的研究者解决问题的角度不同,为 可解释性赋予的涵义也不同,所提出的可解释性方法也各有侧重。目前被广泛接受的一种定义由 Miller (2017)[2,42]所提出,指可解释性是人们能够理解决策原因的程度。如果一个模型比另一个模型的决策过程 更简单、明了、易于理解,那么它就比另一个模型具有更高的可解释性。

在某些情况下,我们不必关心模型为什么做出这样的预测,因为它们是在低风险的环境中使用的,这 意味着错误不会造成严重后果(例如,电影推荐系统),但是对于某些问题或任务,仅仅获得预测结果是 不够的。该模型还必须解释是怎么获得这个预测的,因为正确的预测只部分地解决了原始问题。通常来说, 以下三点原因推动了对可解释性的需求:

1、高可靠性要求。尽管可解释性对于一些系统来说并不是不可或缺的,但是,对于某些需要高度可靠 的预测系统来说很重要,因为错误可能会导致灾难性的结果(例如,人的生命、重大的经济损失)。可解释性可以使潜在的错误更容易被检测到,避免严重的后果。此外,它可以帮助工程师查明根 本原因并相应地提供修复。可解释性不会使模型更可靠或其性能更好,但它是构建高度可靠系统 的重要组成部分。

2、道德和法律要求。第一个要求是检测算法歧视。由于机器学习技术的性质,经过训练的深度神经网 络可能会继承训练集中的偏差,这有时很难被注意到。在我们的日常生活中使用 DNN 时存在公 平性问题,例如抵押资格、信用和保险风险评估。人们要求算法能够解释作出特定预测或判断的 原因,希望模型的解释能够使“算法歧视”的受害者诉诸人权。此外,推理模型目前也被用于新 药的发现和设计[124] 。在药物设计领域,除了临床测试结果以外,新药还需要通常还需要支持结 果的生物学机制,需要具备可解释性才能获得监管机构的批准,例如国家药品监督管理局 (NMPA)。

3、科学发现的要求。推理模型本身应该成为知识的来源,可解释性使提取模型捕获的这些额外知识成 为可能。当深度网络达到比旧模型更好的性能时,它们一定发现了一些未知的“知识”。可解释性 是揭示这些知识的一种方式。

1.3 本文的划分标准

根据不同的划分标准,知识推理模型可以被划分成不同的类别。其中,根据解释产生的方法,可以将 推理模型划分为两大类:事前可解释和事后可解释[41,62,96,97,102,118]。其中,事前可解释模型主要指不需要额 外的解释方法,解释蕴含在自身架构之中的模型。事后可解释性是指模型训练后运用解释方法进行推理过 程和推理结果的解释,解释方法自身是不包含在模型里面的。一种方法被看作能够对黑盒模型进行解释, 是指该方法可以:(1)通过可解释和透明的模型(例如,浅决策树、规则列表或者稀疏线性模型)对模型 的行为进行近似,可以为模型提供全局的可解释;(2)能够解释模型在特定输入样例上进行预测的原因;(3)可以对模型进行内部检查,了解模型的某些特定属性,譬如模型敏感性或深度学习中神经元在某一特 定决策中起到的作用[41] 。值得注意的是,可以将事后解释方法应用于事前可解释的模型上,例如,可以 从敏感性分析的角度对事前模型进行剖析。此外,根据可解释的范围大小----是否解释单个实例预测或整个 模型行为,可以将模型划分为局部可解释和全局可解释两大类[97,96];根据解释方法是否特定于模型,可以 将模型划分为特定于模型和模型无关两种类别[96] 。在接下来的内容里,本文按照解释产生的方式,对知 识推理模型进行总结和归类。

成为VIP会员查看完整内容
0
41

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

知识图谱(KG)是一种用图模型来描述知识和建模事物之间关联关系的技术.知识图谱嵌入(KGE)作为一种被广泛采用的知识表示方法,其主要思想是将知识图谱中的实体和关系嵌入到连续的向量空间中,用来简化操作,同时保留KG的固有结构.它可以使得多种下游任务受益,例如KG补全和关系提取等.首先对现有的知识图谱嵌入技术进行全面回顾,不仅包括使用KG中观察到的事实进行嵌入的技术,还包括添加时间维度的动态KG嵌入方法,以及融合多源信息的KG嵌入技术.对相关模型从实体嵌入、关系嵌入、评分函数等方面进行分析、对比与总结.然后简要介绍KG嵌入技术在下游任务中的典型应用,包括问答系统、推荐系统和关系提取等.最后阐述知识图谱嵌入面临的挑战,对未来的研究方向进行展望.

http://www.jos.org.cn/jos/article/abstract/6429

成为VIP会员查看完整内容
0
41

随着智能化水平的不断提高, 每时每刻都有大量的新知识产生, 知识图谱逐渐成为我们管理知识的工具之一. 但现有的知识图谱仍然存在属性缺失、关系稀疏等问题, 同时还存在大量噪声信息, 导致图谱质量不佳, 易对自然语言处理领域中的各类任务造成影响. 面向知识图谱的知识推理技术作为目前的研究热点, 是解决该问题的主要方法, 其通过模拟人的推理过程完成对图谱信息的完善, 在众多应用中有较好表现. 以知识图谱为切入点, 将知识推理技术按类别划分并分别阐释, 详细分析该技术的几种应用任务, 例如智能问答、推荐系统等, 最后对未来主要研究方向进行展望, 提出几种研究思路.

http://www.c-s-a.org.cn/csa/article/abstract/8137

成为VIP会员查看完整内容
0
48

知识图谱问答是通过处理用户提出的自然语言问题,基于知识图谱的某种形式,从中获取相关答案的过程。由于知识规模、计算能力及自然语言处理能力的制约,早期知识库问答系统被应用于限定领域。近年来,随着知识图谱的发展,以及开放领域问答数据集的陆续提出,知识图谱已用于开放领域问答研究与实践。以技术发展为主线,对开放领域知识图谱问答进行综述。首先,介绍五种基于规则模板的开放领域知识图谱问答方法:传统语义解析、传统信息检索、三元组匹配、话语模板和查询模板,这类方法主要依赖人工定义的规则模板完成问答工作。其次,描述五种基于深度学习的方法,这类方法采用神经网络模型完成问答过程的各类子任务,包括知识图谱嵌入、记忆网络、基于神经网络的语义解析、基于神经网络的查询图、基于神经网络的信息检索。接着,介绍开放领域知识图谱问答常用的4个通用领域知识图谱和11个开放领域问答数据集。随后,按照问题的难易程度选择3个经典问答数据集比较各问答系统的性能指标,对比不同方法间的性能差异并进行分析。最后,展望开放领域知识图谱问答的未来研究方向。

http://fcst.ceaj.org/CN/abstract/abstract2909.shtml

成为VIP会员查看完整内容
0
25

针对知识图谱(KG)在知识驱动的人工智能研究中发挥的强大支撑作用,分析并总结了现有知识图谱和知识超图技术。首先,从知识图谱的定义与发展历程出发,介绍了知识图谱的分类和架构;其次,对现有的知识表示与存储方式进行了阐述;然后,基于知识图谱的构建流程,分析了各类知识图谱构建技术的研究现状。特别是针对知识图谱中的知识推理这一重要环节,分析了基于逻辑规则、嵌入表示和神经网络的三类典型的知识推理方法。此外,以异构超图引出知识超图的研究进展,并提出三层架构的知识超图,从而更好地表示和提取超关系特征,实现对超关系数据的建模及快速的知识推理。最后,总结了知识图谱和知识超图的典型应用场景并对未来的研究作出了展望。

随着计算机科学相关领域研究的不断深入,人工智能的 研究重心由感知智能转向认知智能。专家系统和语义网络作 为认知智能的早期代表,提出“将知识引入人工智能领域”,在 某些特定领域具备一定的问题解决能力,但仍存在规模较小、 自动化构建能力不足、知识获取困难等一系列问题。知识图谱(Knowledge Graph,KG)的出现,改变了传统的 知识获取模式,将知识工程“自上而下”方式转变为挖掘数据、 抽取知识的“自下而上”方式。经过长期的理论创新与实践探 索,知识图谱已经具备体系化的构建与推理方法。然而,对于 实体关系,知识图谱虽然有较强的建模能力,但难以表达普遍存在的多元关系。知识超图通过引入超边关系,能够完整表 达各种复杂的关系类型,得到学术界和工业界的高度关注。此 外 ,知 识 图 谱 和 知 识 超 图 能 够 结 合 深 度 学 习(Deep Learning,DL)等人工智能技术,实现高效推理。

http://www.joca.cn/CN/abstract/abstract24872.shtml

成为VIP会员查看完整内容
0
60

近年来,知识图谱问答在医疗、金融、政务等领域被广泛应用。用户不再满足于关于实体属性的单跳问答,而是更多地倾向表达复杂的多跳问答需求。为了应对上述复杂多跳问答,各种不同类型的推理方法被陆续提出。系统地介绍了基于嵌入、路径、逻辑的多跳知识问答推理的最新研究进展以及相关数据集和评测指标,并重点围绕前沿问题进行了讨论。最后总结了现有方法的不足,并展望了未来的研究方向。

成为VIP会员查看完整内容
0
53

摘要:数据和知识是新一代信息技术与智能制造深度融合的基础。然而,当前产品设计、制造、装配和服务等过程中,数据及知识的存储大多以传统关系型数据库为基础,这导致了数据及知识的冗余性和搜索及推理的低效性。近年来,知识图谱技术飞速发展起来,它本质上是基于语义网络的思想,可以实现对现实世界的事物及其相互关系的形式化描述。该技术为智能制造领域数据及知识的关联性表达和相关性搜索推理问题的解决带来了可能性,因此其在智能制造的实现过程中扮演着越来越重要的角色。为了给知识图谱在智能制造领域的应用提供理论支撑,总结了知识图谱领域的研究进展;同时探索了知识图谱在智能制造领域的3大类应用方向,共15小类应用前景,分析了在各个应用前景上与传统方法的不同之处,应用过程中所需要使用的知识图谱相关技术以及实施过程中所待突破的关键技术,希望可以为进一步展开针对知识图谱在智能制造领域的研究提供启发,同时为相关企业针对知识图谱的实际应用提供参考;最后以数控车床故障分析为案例,验证了知识图谱在智能制造领域应用的有效性。

物联网、云计算、人工智能等新一代信息技术的迅猛发展,带来了制造业的新一轮突破,推动着制造系统向智能化方向发展,驱动着未来制造模式的创新[1]。其中数据和知识是实现制造业与新一代信息技术融合的基础,是实现智能制造的保障。一方面,产品在其生命周期的各个阶段将会产生海量工业数据和知识[2];另一方面,工业数据和知识是制造领域的信息化进程的必备资源,其中蕴含了大量有用的模式。然而,当前制造领域产品设计、制造、装配、服务等生命周期过程中数据以及知识的存储大多以传统关系型数据库为基础,冗余性较高、分布分散、关联性较弱且储量相对较小,强调对数据以及知识的检索却较少从语义层面研究数据以及知识的关联、认知、理解与推理。因此,如何从冗 余的数据与知识文本中抽取有用信息,如何有效表 达数据之间的内在关联与知识之间的内在关联,如 何有效利用数据的关联性与知识的关联性实现高效 的信息检索与信息推理,是当前实现智能制造目标 的核心瓶颈之一。知识图谱(Knowledge graph,KG)来源于谷歌下 一代智能语义搜索引擎技术。其本质上基于语义网 络的思想,是一种有向图结构的语义知识库,用于 以符号形式描述物理世界中的概念及其相互关 系 [3],其应用服务架构如图 1 所示。在知识图谱内 部,数据和知识的存储结构为三元组,形如 s p o , ,其中 s 和 o 为知识图谱中的节点,分别 代表了主语实体知识和宾语实体知识, p 为知识图 谱中的边,代表了从 s 指向 o 的关系知识(谓语)。

知识图谱具有如下 3 种特点:① 数据及知识的 存储结构为有向图结构。有向图结构允许知识图谱 有效地存储数据和知识之间的关联关系;② 具备高 效的数据和知识检索能力。知识图谱可以通过图匹 配算法,实现高效的数据和知识访问;③ 具备智能 化的数据和知识推理能力。知识图谱可以自动化、 智能化地从已有的知识中发现和推理多角度的隐含知识。

目前,知识图谱技术已经在互联网领域如搜索引擎、智能问答等发挥了重要作用,同时也已经在 多个领域进行初步应用,比如:金融、电商、医疗 等 [4]。许多国际著名企业也已经开始探索知识图谱 的应用,比如谷歌、微软、IBM、苹果等。与此同 时,在智能制造领域,西门子于 2018 年提出了他们 在知识图谱领域的规划[5];博世公司于 2019 年构建 了底盘系统控制相关数据的大型知识图谱,以提供 有效地数据访问[6]。然而国内的机械行业针对知识 图谱的探索却有些许不足。在研究过程中以及与多家机械相关企业的交流中发现,当前知识图谱在智 能制造领域应用过程还存在以下不足。

(1) 缺乏对知识图谱理论的深入认识。目前知 识图谱相关理论与技术在迅速发展,但是智能制造 领域的专家大多对该技术缺乏深入的了解,无法有 效管理和应用知识图谱中的数据及知识。

(2) 知识图谱相关技术在智能制造领域的优势 不明晰。目前知识图谱在智能制造领域的应用处于 起步阶段,针对产品设计、制造、装配、服务等过 程所带来的优势不是很明确,且在知识图谱应用于 智能制造领域过程中可能遇到的问题尚不明确。

(3) 知识图谱相关技术在智能制造领域的应用 场景模糊。当前企业对知识图谱在智能制造领域的 应用前景有所疑问,不确定知识图谱技术在产品设 计、制造、装配和服务等过程的切入点和切入方式。

(4) 知识图谱在智能制造领域落地所需要的技 术不明确。目前在通用领域上的知识图谱的研究角 度十分广泛,但是针对智能制造领域各个应用场景, 所需要使用的知识图谱相关技术类别却还不是很明晰。

(5) 智能制造领域相关数据缺乏。目前基于深 度学习的知识图谱相关技术需要构建一定量的有标 签数据集,目前通用领域的相关数据集比较多,而 智能制造领域的相关数据却比较缺乏。

针对以上问题,本文总结了可以应用于智能制 造领域的知识图谱技术的研究进展。同时从应用出 发,探索了知识图谱在智能制造领域的 3 大类应用 方向,共 15 小类应用前景,分析了在各个应用前景 上与传统方法的不同之处,应用过程中所需要的知 识图谱技术以及实施过程中所待突破的关键技术, 为后续知识图谱在智能制造领域的进一步落地提供 理论支撑和方法参考。

成为VIP会员查看完整内容
0
70

我们生活在一个由大量不同模态内容构建而成的多媒体世界中,不同模态信息之间具有高度的相关性和互补性,多模态表征学习的主要目的就是挖掘出不同模态之间的共性和特性,产生出可以表示多模态信息的隐含向量.该文章主要介绍了目前应用较广的视觉语言表征的相应研究工作,包括传统的基于相似性模型的研究方法和目前主流的基于语言模型的预训练的方法.目前比较好的思路和解决方案是将视觉特征语义化然后与文本特征通过一个强大的特征抽取器产生出表征,其中Transformer[1]作为主要的特征抽取器被应用表征学习的各类任务中.文章分别从研究背景、不同研究方法的划分、测评方法、未来发展趋势等几个不同角度进行阐述.

http://www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1

成为VIP会员查看完整内容
0
103

推荐系统旨在为用户推荐个性化的在线商品或信息, 其广泛应用于众多Web场景之中, 来处理海量信息数据所导致的信息过载问题, 以此提升用户体验. 鉴于推荐系统强大的实用性, 自20世纪90年代中期以来, 研究者针对其方法与应用两方面, 进行了大量广泛的研究. 近年来, 很多工作发现知识图谱中所蕴含的丰富信息可以有效地解决推荐系统中存在的一系列关键问题, 例如数据稀疏、冷启动、推荐多样性等. 因此, 本文 针对基于知识图谱的推荐系统这一领域进行了全面的综述. 具体地, 首先简单介绍推荐系统与知识图谱中的一些基本概念. 随后, 详细介绍现有方法如何挖掘知识图谱不同种类的信息并应用于推荐系统. 此外, 总结了相关的一系列推荐应用场景. 最后, 提出了对基于知识图谱的推荐系统前景的看法, 并展望了该领域未来的研究方向.

成为VIP会员查看完整内容
0
226
小贴士
相关VIP内容
专知会员服务
41+阅读 · 2021年11月11日
专知会员服务
48+阅读 · 2021年11月1日
专知会员服务
25+阅读 · 2021年10月30日
专知会员服务
60+阅读 · 2021年8月26日
专知会员服务
53+阅读 · 2021年6月13日
专知会员服务
39+阅读 · 2021年5月29日
专知会员服务
70+阅读 · 2021年2月25日
专知会员服务
103+阅读 · 2020年12月3日
专知会员服务
226+阅读 · 2020年8月10日
相关资讯
多模态视觉语言表征学习研究综述
专知
12+阅读 · 2020年12月3日
【知识图谱】知识图谱嵌入模型简介
深度学习自然语言处理
4+阅读 · 2020年10月10日
基于图神经网络的知识图谱研究进展
AI科技评论
7+阅读 · 2020年8月31日
【长文综述】基于图神经网络的知识图谱研究进展
深度学习自然语言处理
7+阅读 · 2020年8月23日
基于知识图谱的推荐系统研究综述
专知
3+阅读 · 2020年8月10日
领域知识图谱研究综述
专知
10+阅读 · 2020年8月2日
知识图谱最新研究综述
深度学习自然语言处理
33+阅读 · 2020年6月14日
知识图谱嵌入(KGE):方法和应用的综述
专知
45+阅读 · 2019年8月25日
综述 | 知识图谱向量化表示
PaperWeekly
17+阅读 · 2017年10月25日
相关论文
Jian Yang,Gang Xiao,Yulong Shen,Wei Jiang,Xinyu Hu,Ying Zhang,Jinghui Peng
17+阅读 · 2021年10月1日
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip S. Yu,Weixiong Zhang
7+阅读 · 2021年8月14日
Commonsense Knowledge Base Completion with Structural and Semantic Context
Chaitanya Malaviya,Chandra Bhagavatula,Antoine Bosselut,Yejin Choi
17+阅读 · 2019年12月19日
Integrating Graph Contextualized Knowledge into Pre-trained Language Models
Bin He,Di Zhou,Jinghui Xiao,Xin jiang,Qun Liu,Nicholas Jing Yuan,Tong Xu
3+阅读 · 2019年12月3日
Domain Representation for Knowledge Graph Embedding
Cunxiang Wang,Feiliang Ren,Zhichao Lin,Chenxv Zhao,Tian Xie,Yue Zhang
10+阅读 · 2019年9月11日
Ke Sun,Zhouchen Lin,Zhanxing Zhu
11+阅读 · 2019年8月14日
Building Knowledge Graphs About Political Agents in the Age of Misinformation
Daniel Schwabe,Carlos Laufer,Antonio Busson
4+阅读 · 2019年1月29日
Knowledge Representation Learning: A Quantitative Review
Yankai Lin,Xu Han,Ruobing Xie,Zhiyuan Liu,Maosong Sun
26+阅读 · 2018年12月28日
Wenhan Xiong,Thien Hoang,William Yang Wang
18+阅读 · 2018年1月8日
Top
微信扫码咨询专知VIP会员