深度生成模型基本都是以某种方式寻找并表达(多变量)数据的概率分布。有基于无向图模型(马尔可夫模型)的联合概率分布模型,另外就是基于有向图模型(贝叶斯模型)的条件概率分布。前者的模型是构建隐含层(latent)和显示层(visible)的联合概率,然后去采样。基于有向图的则是寻找latent和visible之间的条件概率分布,也就是给定一个随机采样的隐含层,模型可以生成数据。 生成模型的训练是一个非监督过程,输入只需要无标签的数据。除了可以生成数据,还可以用于半监督的学习。
理论到应用,朱军教授带团队解读扩散概率模型
机器之心
2+阅读 · 2022年11月22日
Cell子刊综述:药物研发进入智能生成时代
PaperWeekly
1+阅读 · 2022年11月6日
Cell子刊综述|深度生成模型重塑药物研发
「扩散模型」Awesome资料最新大合集
专知
3+阅读 · 2022年10月10日
LoveLive!出了一篇AI论文:生成模型自动写曲谱
机器之心
0+阅读 · 2022年3月1日
参考链接
微信扫码咨询专知VIP会员