This paper presents our task-oriented dialog system UBAR which models task-oriented dialogs on a dialog session level. Specifically, UBAR is acquired by fine-tuning the large pre-trained unidirectional language model GPT-2 on the sequence of the entire dialog session which is composed of user utterance, belief state, database result, system act, and system response of every dialog turn. Additionally, UBAR is evaluated in a more realistic setting, where its dialog context has access to user utterances and all content it generated such as belief states, system acts, and system responses. Experimental results on the MultiWOZ datasets show that UBAR achieves state-of-the-art performances in multiple settings, improving the combined score of response generation, policy optimization, and end-to-end modeling by 4.7, 3.5, and 9.4 points respectively. % especially in end-to-end modeling, where we improve the combined score by 9.4 points. Thorough analyses demonstrate that the session-level training sequence formulation and the generated dialog context are essential for UBAR to operate as a fully end-to-end task-oriented dialog system in real life. We also examine the transfer ability of UBAR to new domains with limited data and provide visualization and a case study to illustrate the advantages of UBAR in modeling on a dialog session level.


翻译:本文介绍了我们以任务为导向的对话系统 UBAR, 它在对话会中模拟了以任务为导向的对话。 具体地说, UBAR是通过微调大型预先训练的单向单向语言模型GPT-2 获得的, 该模型涉及整个对话会的顺序, 整个对话会的顺序由用户发言、 信仰状态、 数据库结果、 系统动作和每个对话会场的系统反应组成。 此外, UBAR 是在更现实的环境下进行评估的, 其对话环境可以读取用户的言论和它生成的所有内容, 如信仰状态、 系统动作和系统反应。 多WOZ 数据集的实验结果表明, UBAR 在多个环境中取得了最先进的业绩, 改进了反应生成、政策优化和端对端模型的组合得分, 分别是4. 7、3.5和9.4 和9.4 点。 % 特别是端对终端到端的模型, 我们把合并的得分提高9.4分。 索拉夫分析表明, 班级培训序列的设置和生成的对话环境环境对于UBAR作为完全端到任务式模式对话系统的运行, 在现实生活中, 和视觉对话中, 将一个有限的数据库中, 向有一定的样的成绩分析。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2018年11月12日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员