One of the fundamental tasks in quantum metrology is to estimate multiple parameters embedded in a noisy process, i.e., a quantum channel. In this paper, we study fundamental limits to quantum channel estimation via the concept of amortization and the right logarithmic derivative (RLD) Fisher information value. Our key technical result is the proof of a chain-rule inequality for the RLD Fisher information value, which implies that amortization, i.e., access to a catalyst state family, does not increase the RLD Fisher information value of quantum channels. This technical result leads to a fundamental and efficiently computable limitation for multiparameter channel estimation in the sequential setting, in terms of the RLD Fisher information value. As a consequence, we conclude that if the RLD Fisher information value is finite, then Heisenberg scaling is unattainable in the multiparameter setting.
翻译:量子计量学的基本任务之一是估计在噪音过程(即量子信道)中嵌入的多重参数。在本文中,我们研究了通过摊销概念和正确的对数衍生物(RLD)渔业信息价值对量子信道估算的基本限制。我们的主要技术结果是证明RLD渔业信息价值存在链规则不平等,这意味着摊销(即与催化剂国家大家庭的接触)不会增加RLD渔业量子频道的信息价值。这一技术结果导致在RLD渔业信息价值方面,在顺序环境下,对多参数频道估算产生一个基本和高效的可计算限制。因此,我们得出结论,如果RLD渔业信息价值是有限的,那么海森堡渔业信息价值在多参数设置中是无法实现的。