Threshold signatures are a fundamental cryptographic primitive used in many practical applications. As proposed by Boneh and Komlo (CRYPTO'22), TAPS is a threshold signature that is a hybrid of privacy and accountability. It enables a combiner to combine t signature shares while revealing nothing about the threshold t or signing quorum to the public and asks a tracer to track a signature to the quorum that generates it. However, TAPS has three disadvantages: it 1) structures upon a centralized model, 2) assumes that both combiner and tracer are honest, and 3) leaves the tracing unnotarized and static. In this work, we introduce Decentralized, Threshold, dynamically Accountable and Private Signature (DeTAPS) that provides decentralized combining and tracing, enhanced privacy against untrusted combiners (tracers), and notarized and dynamic tracing. Specifically, we adopt Dynamic Threshold Public-Key Encryption (DTPKE) to dynamically notarize the tracing process, design non-interactive zero knowledge proofs to achieve public verifiability of notaries, and utilize the Key-Aggregate Searchable Encryption to bridge TAPS and DTPKE so as to awaken the notaries securely and efficiently. In addition, we formalize the definitions and security requirements for DeTAPS. Then we present a generic construction and formally prove its security and privacy. To evaluate the performance, we build a prototype based on SGX2 and Ethereum.


翻译:门限签名是许多实际应用程序中使用的基本加密原语。TAPS是一种门限签名,它是隐私和问责相结合的混合体。它允许一个组合者组合t个签名份额,同时不向公众透露门限t或签名仲裁委员会,并要求一个追踪器跟踪签名到生成它的仲裁委员会。然而,TAPS具有三个缺点:它1)基于集中化模型,2)假定组合者和追踪器都是诚实的,3)将追踪留给静态和未经公证。在这项工作中,我们介绍了Decentralized, Threshold, dynamically Accountable and Private Signature(DeTAPS),它提供了去中心化的组合和追踪,增强了对不受信任的组合者(追踪者)的隐私,以及公证和动态追踪。具体而言,我们采用动态门限公钥加密(DTPKE)来动态公证追踪过程,设计非交互式零知识证明以实现公共可验证性,利用密钥聚合可搜索加密将TAPS和DTPKE联系起来,以安全高效地唤醒公证者。此外,我们正式化了DeTAPS的定义和安全要求。然后,我们提出了一个通用的构造,并正式证明了其安全性和隐私性。为了评估性能,我们基于SGX2和Ethereum构建了一个原型。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员