Data assimilation is concerned with sequentially estimating a temporally-evolving state. This task, which arises in a wide range of scientific and engineering applications, is particularly challenging when the state is high-dimensional and the state-space dynamics are unknown. This paper introduces a machine learning framework for learning dynamical systems in data assimilation. Our auto-differentiable ensemble Kalman filters (AD-EnKFs) blend ensemble Kalman filters for state recovery with machine learning tools for learning the dynamics. In doing so, AD-EnKFs leverage the ability of ensemble Kalman filters to scale to high-dimensional states and the power of automatic differentiation to train high-dimensional surrogate models for the dynamics. Numerical results using the Lorenz-96 model show that AD-EnKFs outperform existing methods that use expectation-maximization or particle filters to merge data assimilation and machine learning. In addition, AD-EnKFs are easy to implement and require minimal tuning.
翻译:数据同化涉及对时间变化状态进行顺序估算。 这项任务产生于一系列广泛的科学和工程应用,当状态是高维和状态空间动态未知时,特别具有挑战性。 本文为在数据同化中学习动态系统引入了机器学习框架。 我们的自动差别化的混合式卡尔曼过滤器(AD- EnKFs)混合了用于州恢复的混合式卡尔曼过滤器和用于学习动态的机器学习工具。 在这样做的时候, AD- EnKFs 利用全方位卡尔曼过滤器的能力向高维状态进行缩放,以及自动分化能力为动态培训高维代管模型。 使用Lorenz-96 模型的数值结果显示, AD- EnKFs 超越了使用预期- 氧化或粒子过滤器合并数据同化和机器学习的现有方法。 此外, AD- EnKFs 很容易实施,需要最低限度的调整。