Image registration is a key task in medical imaging applications, allowing to represent medical images in a common spatial reference frame. Current literature on image registration is generally based on the assumption that images are usually accessible to the researcher, from which the spatial transformation is subsequently estimated. This common assumption may not be met in current practical applications, since the sensitive nature of medical images may ultimately require their analysis under privacy constraints, preventing to share the image content in clear form. In this work, we formulate the problem of image registration under a privacy preserving regime, where images are assumed to be confidential and cannot be disclosed in clear. We derive our privacy preserving image registration framework by extending classical registration paradigms to account for advanced cryptographic tools, such as secure multi-party computation and homomorphic encryption, that enable the execution of operations without leaking the underlying data. To overcome the problem of performance and scalability of cryptographic tools in high dimensions, we first propose to optimize the underlying image registration operations using gradient approximations. We further revisit the use of homomorphic encryption and use a packing method to allow the encryption and multiplication of large matrices more efficiently. We demonstrate our privacy preserving framework in linear and non-linear registration problems, evaluating its accuracy and scalability with respect to standard image registration. Our results show that privacy preserving image registration is feasible and can be adopted in sensitive medical imaging applications.
翻译:在医学成像应用中,图像登记是医学成像应用中的一项关键任务,可以在共同的空间参照框架内代表医学图像。关于图像登记的现有文献通常基于以下假设:研究人员通常可以查阅图像,随后对空间转换作出估计。在目前的实际应用中,可能无法满足这一共同的假设,因为医学成像的敏感性质最终需要在隐私限制下进行其分析,从而无法以明确的形式共享图像内容。在这项工作中,我们在隐私保护制度下制定图像登记问题,假设图像是保密的,不能以清晰的方式披露。我们通过扩大古典登记模式来说明先进的加密工具,例如安全的多党计算和同式加密,从而使得能够在不泄露基本数据的情况下进行操作。为了克服高维度加密工具的性能和可缩放问题,我们首先提议利用梯度校准法优化基本图像登记操作。我们进一步重新审视使用同性加密方法,并使用包装方法使大型矩阵的加密和倍增。我们在直线性和非直线式加密应用中展示我们的隐私保存框架,在标准成像登记中显示我们的敏感性图像的准确性,我们可以评估。