In the field of brain-computer interface (BCI) research, the availability of high-quality open-access datasets is essential to benchmark the performance of emerging algorithms. The existing open-access datasets from past competitions mostly deal with healthy individuals' data, while the major application area of BCI is in the clinical domain. Thus the newly proposed algorithms to enhance the performance of BCI technology are very often tested against the healthy subjects' datasets only, which doesn't guarantee their success on patients' datasets which are more challenging due to the presence of more nonstationarity and altered neurodynamics. In order to partially mitigate this scarcity, Clinical BCI Challenge aimed to provide an open-access rich dataset of stroke patients recorded similar to a neurorehabilitation paradigm. Another key feature of this challenge is that unlike many competitions in the past, it was designed for algorithms in both with-in subject and cross-subject categories as a major thrust area of current BCI technology is to realize calibration-free BCI designs. In this paper, we have discussed the winning algorithms and their performances across both competition categories which may help develop advanced algorithms for reliable BCIs for real-world practical applications.


翻译:在大脑-计算机界面(BCI)研究领域,高质量开放存取数据集的提供对于衡量新兴算法的性能至关重要。从以往的竞争中获得的现有开放存取数据集大多涉及健康的个人数据,而BCI的主要应用领域则在临床领域。因此,新提出的提高BCI技术性能的算法往往仅针对健康的主体数据集进行测试,这并不能保证其在患者数据集上的成功,而由于存在更多的非静止性和改变的神经动力学,这些数据集更具有挑战性。为了部分缓解这种稀缺性,临床存取BCI挑战旨在提供与神经康复范式相似的中风病人公开存取的丰富数据集。这一挑战的另一个关键特征是,与以往的许多竞争不同,它设计用于与主题和交叉主题类别相关的算法,作为当前BCI技术的一个主要主旨领域,是实现无校准的BCI设计。在本文中,我们讨论了赢得的算法及其在实际竞争类别中的性能,可以帮助发展先进的BCI软件的先进算法。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
20+阅读 · 2020年6月8日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员