Datasets can be biased due to societal inequities, human biases, under-representation of minorities, etc. Our goal is to certify that models produced by a learning algorithm are pointwise-robust to potential dataset biases. This is a challenging problem: it entails learning models for a large, or even infinite, number of datasets, ensuring that they all produce the same prediction. We focus on decision-tree learning due to the interpretable nature of the models. Our approach allows programmatically specifying bias models across a variety of dimensions (e.g., missing data for minorities), composing types of bias, and targeting bias towards a specific group. To certify robustness, we use a novel symbolic technique to evaluate a decision-tree learner on a large, or infinite, number of datasets, certifying that each and every dataset produces the same prediction for a specific test point. We evaluate our approach on datasets that are commonly used in the fairness literature, and demonstrate our approach's viability on a range of bias models.
翻译:由于社会不平等、人类偏见、少数群体代表人数不足等原因,数据集可能存在偏差。我们的目标是证明学习算法产生的模型对潜在的数据集偏差具有尖锐的作用。这是一个具有挑战性的问题:它涉及大量数据集(甚至无限)的学习模型,确保它们都产生相同的预测。我们注重决策-树木学习,因为模型具有可解释的性质。我们的方法允许在方案上具体说明不同层面的偏见模型(例如少数群体缺失的数据)、包含偏见类型和针对特定群体的偏见。为了证明稳健性,我们使用一种新颖的象征性技术来评估决策-树木学习者在大量或无限的数据集数量上,证明每个数据集都为特定测试点提供相同的预测。我们评估了我们在公平文献中常用的数据集方面的做法,并展示了我们在一系列偏差模型上的做法的可行性。