Deep neural networks can be unreliable in the real world when the training set does not adequately cover all the settings where they are deployed. Focusing on image classification, we consider the setting where we have an error distribution $\mathcal{E}$ representing a deployment scenario where the model fails. We have access to a small set of samples $\mathcal{E}_{sample}$ from $\mathcal{E}$ and it can be expensive to obtain additional samples. In the traditional model development framework, mitigating failures of the model in $\mathcal{E}$ can be challenging and is often done in an ad hoc manner. In this paper, we propose a general methodology for model debugging that can systemically improve model performance on $\mathcal{E}$ while maintaining its performance on the original test set. Our key assumption is that we have access to a large pool of weakly (noisily) labeled data $\mathcal{F}$. However, naively adding $\mathcal{F}$ to the training would hurt model performance due to the large extent of label noise. Our Data-Centric Debugging (DCD) framework carefully creates a debug-train set by selecting images from $\mathcal{F}$ that are perceptually similar to the images in $\mathcal{E}_{sample}$. To do this, we use the $\ell_2$ distance in the feature space (penultimate layer activations) of various models including ResNet, Robust ResNet and DINO where we observe DINO ViTs are significantly better at discovering similar images compared to Resnets. Compared to LPIPS, we find that our method reduces compute and storage requirements by 99.58\%. Compared to the baselines that maintain model performance on the test set, we achieve significantly (+9.45\%) improved results on the debug-heldout sets.


翻译:深神经网络在现实世界中不可靠, 当训练组无法充分覆盖所有部署的设置时, 深神经网络在现实世界中不可靠。 以图像分类为重点, 我们考虑一个设置, 我们的错误分布 $\ mathcal{ E} 代表模型失败的部署假想 。 我们可以从$\ mathcal{ E} 获得一组小样本 $\ mathcal{ e} 美元, 获取更多样本可能非常昂贵 。 在传统的模型开发框架中, 减缓 $metal { mathal{ E} 的模型失败可能是具有挑战性的, 并且往往以临时方式完成。 在本文中, 我们为模型进行调试的通用方法可以系统改进模型的模型性能 $\ mathcall{E} 。 我们的关键假设是, 我们的标定数据库可以使用 $math cal adal adaldeal $_ dismology 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
59+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月18日
Arxiv
0+阅读 · 2023年1月17日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员