We study asymptotic statistical inference in the space of bounded functions endowed with the supremum norm over an arbitrary metric space $S$ using a novel concept: Simultaneous Confidence Probability Excursion (SCoPE) sets. Given an estimator SCoPE sets simultaneously quantify the uncertainty of several lower and upper excursion sets of a target function and thereby grant a unifying perspective on several statistical inference tools such as simultaneous confidence bands, quantification of uncertainties in level set estimation, for example, CoPE sets, and multiple hypothesis testing over $S$, for example, finding relevant differences or regions of equivalence within $S$. As a byproduct our abstract treatment allows us to refine and generalize the methodology and reduce the assumptions in recent articles in relevance and equivalence testing in functional data.
翻译:我们研究了在任意度量空间 $S$ 中取用有限最大范数的有界函数空间的渐近统计推理,使用了新概念:Simultaneous Confidence Probability Excursion(SCoPE)设定。给定一个估计器,SCoPE设定同时量化了目标函数的多个下限和上限的轨迹集合的不确定性,从而为多种统计推理工具提供了统一的视角,例如同时置信带、级别集估计中不确定性的量化,例如CoPE集,以及在$S$中进行多重假设检验,例如找到相关差异或等价区域。作为副产品,我们的抽象处理允许我们细化和推广在功能数据相关性和等价性测试中最近文章中的方法,并降低假设的限制。