We study asymptotic statistical inference in the space of bounded functions endowed with the supremum norm over an arbitrary metric space $S$ using a novel concept: Simultaneous Confidence Probability Excursion (SCoPE) sets. Given an estimator SCoPE sets simultaneously quantify the uncertainty of several lower and upper excursion sets of a target function and thereby grant a unifying perspective on several statistical inference tools such as simultaneous confidence bands, quantification of uncertainties in level set estimation, for example, CoPE sets, and multiple hypothesis testing over $S$, for example, finding relevant differences or regions of equivalence within $S$. As a byproduct our abstract treatment allows us to refine and generalize the methodology and reduce the assumptions in recent articles in relevance and equivalence testing in functional data.


翻译:我们研究了在任意度量空间 $S$ 中取用有限最大范数的有界函数空间的渐近统计推理,使用了新概念:Simultaneous Confidence Probability Excursion(SCoPE)设定。给定一个估计器,SCoPE设定同时量化了目标函数的多个下限和上限的轨迹集合的不确定性,从而为多种统计推理工具提供了统一的视角,例如同时置信带、级别集估计中不确定性的量化,例如CoPE集,以及在$S$中进行多重假设检验,例如找到相关差异或等价区域。作为副产品,我们的抽象处理允许我们细化和推广在功能数据相关性和等价性测试中最近文章中的方法,并降低假设的限制。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
99+阅读 · 2023年5月10日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
14+阅读 · 2022年8月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员