Here, we propose an original approach for human activity recognition (HAR) with commercial IEEE 802.11ac (WiFi) devices, which generalizes across different persons, days and environments. To achieve this, we devise a technique to extract, clean and process the received phases from the channel frequency response (CFR) of the WiFi channel, obtaining an estimate of the Doppler shift at the receiver of the communication link. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment specific) static objects. The proposed HAR framework is trained on data collected as a person performs four different activities and is tested on unseen setups, to assess its performance as the person, the day and/or the environment change with respect to those considered at training time. In the worst case scenario, the proposed HAR technique reaches an average accuracy higher than 95%, validating the effectiveness of the extracted Doppler information, used in conjunction with a learning algorithm based on a neural network, in recognizing human activities in a subject and environment independent fashion.


翻译:在此,我们提出一种人类活动识别(HAR)的原始方法,即商业 IEEE 802.11ac (WiFi) 设备,该方法可以对不同的人、日和环境进行概括。为此,我们设计一种技术,从WiFi 频道的频道频率反应中提取、清理和处理收到的阶段,在通信连接接收器获得多普勒转换的估计值。多普勒转换显示在环境中存在移动散射器,但不受(环境特定)静态物体的影响。拟议的HAR框架以个人身份收集的数据为对象,进行四项不同活动的培训,并测试无形的设置,以评估其作为人、白天和/或环境变化在培训时间所考虑的情况。在最坏的情况下,拟议的HAR技术的平均精确度高于95%,确认所提取的多普勒信息的有效性,同时使用基于神经网络的学习算法,以独立的方式认识人的活动和环境。

0
下载
关闭预览

相关内容

CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年5月7日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员