Gromov-Hausdorff distances measure shape difference between the objects representable as compact metric spaces, e.g. point clouds, manifolds, or graphs. Computing any Gromov-Hausdorff distance is equivalent to solving an NP-Hard optimization problem, deeming the notion impractical for applications. In this paper we propose polynomial algorithm for estimating the so-called modified Gromov-Hausdorff (mGH) distance, whose topological equivalence with the standard Gromov-Hausdorff (GH) distance was established in \cite{memoli12} (M\'emoli, F, \textit{Discrete \& Computational Geometry, 48}(2) 416-440, 2012). We implement the algorithm for the case of compact metric spaces induced by unweighted graphs as part of Python library \verb|scikit-tda|, and demonstrate its performance on real-world and synthetic networks. The algorithm finds the mGH distances exactly on most graphs with the scale-free property. We use the computed mGH distances to successfully detect outliers in real-world social and computer networks.


翻译:Gromov-Hausdorff 测量以紧凑度量空间(如点云、方块或图)为代表的物体之间的方形差异。计算任何Gromov-Hausdorf 距离都相当于解决NP-Hard优化问题,认为这一概念对应用程序来说不切实际。在本文中,我们提出了估算所谓的修改后的Gromov-Hausdorf(mGH)距离的多元算法,该算法与标准Gromov-Hausdorf(GHH)距离的表面等值在\cite{moli12}(M\'emoli,F,\textit{Discrete ⁇ Computational Gegraphy,48}(2) 416-440,2012年)。我们采用非加权图形引致的紧凑矩阵空间的算法,作为Python图书馆\verb ⁇ cikit-tda ⁇ 的一部分,并展示其在现实世界和合成网络上的性表现。算算算算出大多数图表与无尺度属性的距离。我们用计算的MGHGMGHl-l-lal-dal-l-lorl-g-ds

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员