Vibration signals have been increasingly utilized in various engineering fields for analysis and monitoring purposes, including structural health monitoring, fault diagnosis and damage detection, where vibration signals can provide valuable information about the condition and integrity of structures. In recent years, there has been a growing trend towards the use of vibration signals in the field of bioengineering. Activity-induced structural vibrations, particularly footstep-induced signals, are useful for analyzing the movement of biological systems such as the human body and animals, providing valuable information regarding an individual's gait, body mass, and posture, making them an attractive tool for health monitoring, security, and human-computer interaction. However, the presence of various types of noise can compromise the accuracy of footstep-induced signal analysis. In this paper, we propose a novel ensemble model that leverages both the ensemble of multiple signals and of recurrent and convolutional neural network predictions. The proposed model consists of three stages: preprocessing, hybrid modeling, and ensemble. In the preprocessing stage, features are extracted using the Fast Fourier Transform and wavelet transform to capture the underlying physics-governed dynamics of the system and extract spatial and temporal features. In the hybrid modeling stage, a bi-directional LSTM is used to denoise the noisy signal concatenated with FFT results, and a CNN is used to obtain a condensed feature representation of the signal. In the ensemble stage, three layers of a fully-connected neural network are used to produce the final denoised signal. The proposed model addresses the challenges associated with structural vibration signals, which outperforms the prevailing algorithms for a wide range of noise levels, evaluated using PSNR, SNR, and WMAPE.


翻译:振动信号在结构健康监测、故障诊断和损伤检测等工程领域得到了越来越多的应用。在生物工程领域,越来越多的学者开始利用振动信号来分析生物系统的动作,特别是脚步引起的振动信号对于分析人体和动物的运动、人体质量和姿势等提供了宝贵的信息,具有监测健康、安全和人机交互的潜在应用价值。然而,各种噪声的存在可能会破坏脚步引起的振动信号的分析精度。本文提出了一种新颖的基于混合CNN-RNN堆叠集成模型来处理此类问题。该模型由三个阶段构成:预处理、混合建模和集成。在预处理阶段,使用快速傅里叶变换和小波变换提取特征,以捕获所分析系统的基本物理动态,并提取空间和时间特征。在混合建模阶段,使用双向LSTM来去噪附加FFT结果的噪声信号,并使用CNN来获得信号的简化特征表示。在集成阶段,使用三层全连接神经网络来产生最终去噪信号。所提出的模型解决了与结构振动信号相关的挑战,并在噪声水平范围内超过了现有算法,其性能通过PSNR、SNR和WMAPE进行了评估。

1
下载
关闭预览

相关内容

【CVPR2022】开放集半监督图像生成
专知会员服务
21+阅读 · 2022年5月3日
【Haute-Alsace博士论文】深度学习时序分类,175页pdf
专知会员服务
99+阅读 · 2020年10月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
25+阅读 · 2021年3月20日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Image Segmentation Using Deep Learning: A Survey
Arxiv
43+阅读 · 2020年1月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员