Linear evolution PDE $\partial_t u(x,t) = -\mathcal{L} u$, where $\mathcal{L}$ is a strongly elliptic operator independent of time, is studied as an example to show if one can superpose snapshots of a single (or a finite number of) solution(s) to construct an arbitrary solution. Our study shows that it depends on the growth rate of the eigenvalues, $\mu_n$, of $\mathcal{L}$ in terms of $n$. When the statement is true, a simple data-driven approach for model reduction and approximation of an arbitrary solution of a PDE without knowing the underlying PDE is designed. Numerical experiments are presented to corroborate our analysis.
翻译:PDE $\ repart_t u(x,t) = -\ mathcal{L} u$, 其中$\ mathcal{L} u$ 是一个强烈的椭圆形操作器,独立于时间, 研究作为实例, 以表明人们能否在不知晓基本PDE的情况下, 叠加一个单一( 或一定数量的) 解决方案的光照来构建任意解决方案。 我们的研究显示, 它取决于 egenvals 的增长率, $\ mu_ n$, $\ mathcal{L} $ 的增长率。 如果声明属实, 一种简单的数据驱动的模型削减方法, 以及任意的 PDE 解决方案的近似值, 却不知道基本PDE 的设计。 提供了数值实验, 以证实我们的分析 。