Recent advances in retrieval-augmented generation (RAG) have shown promise in enhancing recommendation systems with external knowledge. However, existing RAG-based recommenders face two critical challenges: (1) vulnerability to distribution shifts across different environments (e.g., time periods, user segments), leading to performance degradation in out-of-distribution (OOD) scenarios, and (2) lack of faithful explanations that can be verified against retrieved evidence. In this paper, we propose CIRR, a Causal-Invariant Retrieval-Augmented Recommendation framework that addresses both challenges simultaneously. CIRR learns environment-invariant user preference representations through causal inference, which guide a debiased retrieval process to select relevant evidence from multiple sources. Furthermore, we introduce consistency constraints that enforce faithfulness between retrieved evidence, generated explanations, and recommendation outputs. Extensive experiments on two real-world datasets demonstrate that CIRR achieves robust performance under distribution shifts, reducing performance degradation from 15.4% (baseline) to only 5.6% in OOD scenarios, while providing more faithful and interpretable explanations (26% improvement in faithfulness score) compared to state-of-the-art baselines.
翻译:检索增强生成(RAG)的最新进展显示出通过外部知识增强推荐系统的潜力。然而,现有的基于RAG的推荐器面临两个关键挑战:(1) 对不同环境(例如时间段、用户群体)的分布偏移具有脆弱性,导致在分布外(OOD)场景中性能下降;(2) 缺乏能够根据检索证据进行验证的可信解释。本文提出CIRR,一个因果不变检索增强推荐框架,旨在同时解决这两个挑战。CIRR通过因果推断学习环境不变的用户偏好表示,这些表示指导一个去偏的检索过程从多个来源选择相关证据。此外,我们引入了一致性约束,以强制检索证据、生成解释和推荐输出之间的可信性。在两个真实世界数据集上的大量实验表明,CIRR在分布偏移下实现了稳健的性能,将OOD场景中的性能下降从基线方法的15.4%降低至仅5.6%,同时与最先进的基线方法相比,提供了更可信和可解释的解释(可信度得分提升26%)。