User simulation is increasingly vital to develop and evaluate recommender systems (RSs). While Large Language Models (LLMs) offer promising avenues to simulate user behavior, they often struggle with the absence of specific task alignment required for RSs and the efficiency demands of large-scale simulation. A vast yet underutilized resource for enhancing this alignment is the extensive user feedback inherent in RSs, but leveraging it is challenging due to its ambiguity, noise and massive volume, which hinders efficient preference alignment. To overcome these hurdles, we introduce a novel data construction framework that leverages user feedback in RSs with advanced LLM capabilities to generate high-quality simulation data. Our framework unfolds in two key phases: (1) using LLMs to generate decision-making processes as explanatory rationales on simulation samples, thereby reducing ambiguity; and (2) data distillation based on uncertainty estimation and behavior sampling to efficiently filter the most informative, denoised samples. Accordingly, we fine-tune lightweight LLMs, as user simulators, using such high-quality dataset with corresponding decision-making processes. Extensive experiments confirm that our framework significantly boosts the alignment with human preferences and the in-domain reasoning capabilities of the fine-tuned LLMs, providing more insightful and interpretable signals for RS interaction. We believe our work, together with publicly available developed framework, high-quality mixed-domain dataset, and fine-tuned LLM checkpoints, will advance the RS community and offer valuable insights for broader human-centric AI research.
翻译:用户模拟在推荐系统的开发与评估中日益重要。尽管大语言模型为模拟用户行为提供了有前景的途径,但其往往难以满足推荐系统所需的特定任务对齐要求以及大规模模拟的效率需求。推荐系统中蕴含的海量用户反馈是增强此类对齐的丰富但尚未充分利用的资源,然而由于其模糊性、噪声及数据规模庞大,实现高效的偏好对齐面临挑战。为克服这些障碍,本文提出一种新颖的数据构建框架,该框架结合推荐系统中的用户反馈与先进的大语言模型能力,以生成高质量的模拟数据。我们的框架包含两个关键阶段:(1) 利用大语言模型生成模拟样本的决策过程作为解释性依据,从而降低模糊性;(2) 基于不确定性估计与行为采样的数据蒸馏,以高效筛选信息量最大、去噪后的样本。基于此,我们使用此类高质量数据集及其对应的决策过程,对轻量化大语言模型进行微调,将其作为用户模拟器。大量实验证实,我们的框架显著提升了微调后大语言模型与人类偏好的对齐程度及其领域内推理能力,为推荐系统交互提供了更具洞察力与可解释性的信号。我们相信,本研究连同公开的开发框架、高质量混合领域数据集及微调后的大语言模型检查点,将推动推荐系统领域的发展,并为更广泛的人本人工智能研究提供有价值的见解。