In this study, a Fourier-based, split-step Pad\'e (SSP) method for solving the parabolic wave equation with applications in guided wave propagation in ocean acoustics is presented. Traditional SSP implementations rely in finite-difference discretizations of the depth-dependent differential operator. This approach limits accuracy in coarse discretizations as well as computational efficiency in dense discretizations since it does not significantly benefit from parallelization. In contrast, our proposed method replaces finite differences with a spectral representation using the discrete sine transform (DST). This enables an exact treatment of the vertical operator under homogeneous boundary conditions. For non-constant sound speed, we use a Neumann series expansion to treat inhomogeneities as perturbations. Numerical experiments demonstrate the method's accuracy in range-independent media and rage-dependent scenarios, including propagation in deep ocean with Munk profile and in the presence of a parametrized synoptic eddy. Compared to finite-difference SSP methods, the Fourier-based approach achieves higher accuracy with fewer depth discretization points and avoids the resolution bottleneck associated with sharp field features, making it well-suited for large-scale, high-frequency wave propagation problems in ocean environments.
翻译:本研究提出了一种基于傅里叶变换的分裂步长Padé(SSP)方法,用于求解抛物型波动方程,并应用于海洋声学中的导波传播问题。传统的SSP方法依赖于深度相关微分算子的有限差分离散化。这种方法在粗离散化下精度受限,在密集离散化下计算效率不足,因为它无法充分利用并行化优势。相比之下,我们提出的方法采用离散正弦变换(DST)的谱表示替代有限差分,从而在均匀边界条件下实现对垂直算子的精确处理。对于非恒定声速情况,我们使用诺伊曼级数展开将非均匀性视为扰动处理。数值实验验证了该方法在距离无关介质和距离相关场景下的精度,包括采用Munk剖面的深海传播以及参数化天气涡旋存在下的传播。与有限差分SSP方法相比,基于傅里叶变换的方法能以更少的深度离散点获得更高精度,并避免了由尖锐场特征引起的分辨率瓶颈,使其特别适用于海洋环境中大规模、高频波传播问题的求解。