Salient human detection (SHD) in dynamic 360{\deg} immersive videos is of great importance for various applications such as robotics, inter-human and human-object interaction in augmented reality. However, 360{\deg} video SHD has been seldom discussed in the computer vision community due to a lack of datasets with large-scale omnidirectional videos and rich annotations. To this end, we propose SHD360, the first 360{\deg} video SHD dataset containing various real-life daily scenes borrowed from http://hidden.for.anonymity, with hierarchical annotations for 6,268 key frames uniformly sampled from 37,403 omnidirectional video frames at 4K resolution. Since so far there is no method proposed for 360{\deg} image/video SHD, we systematically benchmark 11 representative state-of-the-art salient object detection approaches on our SHD360. We hope our proposed dataset and benchmark could serve as a good starting point for advancing human-centric researches towards 360{\deg} panoramic data. Our dataset and benchmark will be publicly available at https://github.com/PanoAsh/SHD360.
翻译:在动态360=deg}暗色视频中,人类探测(SHD)在动态360=deg}暗色视频中,对于机器人、人际和人体物体互动等各种应用非常重要,然而,由于缺少大规模全向视频和丰富的说明的数据集,计算机视觉界很少讨论360=deg}视频SHD。为此,我们提议SHD360,即第一个包含从http://hidden.for.anonomymity中借用的各种真实生活日景象的SHD数据集,6 268个关键框架的等级说明统一抽样,取自4K分辨率的37 403个全向视频框。迄今为止,没有为360=deg}图像/视频SHD提议任何方法,因此我们系统地将11个具有代表性的显著物体探测方法基准置于我们的SHD360上。我们希望我们提议的数据集和基准可以作为一个良好的起点,用于推进以人为中心的研究,走向360=degycom}全色数据。我们的数据设置和基准将在 http://gis/gius/HDA360/DDD.