Time series exploration and mining has many applications across several industrial and scientific domains. In this paper, we consider the problem of detecting locally similar pairs and groups, called bundles, over co-evolving time series. These are pairs or groups of subsequences whose values do not differ by more than {\epsilon} for at least delta consecutive timestamps, thus indicating common local patterns and trends. We first present a baseline algorithm that performs a sweep line scan across all timestamps to identify matches. Then, we propose a filter-verification technique that only examines candidate matches at judiciously chosen checkpoints across time. Specifically, we introduce two block scanning algorithms for discovering local pairs and bundles respectively, which leverage the potential of checkpoints to aggressively prune the search space. We experimentally evaluate our methods against real-world and synthetic datasets, demonstrating a speed-up in execution time by an order of magnitude over the baseline. This paper has been published in the 16th International Symposium on Spatial and Temporal Databases (SSTD19).
翻译:时间序列的勘探和开采在许多工业和科学领域有许多应用。 在本文中, 我们考虑探测与本地相似的对和组, 称为捆包, 超过共同变化的时间序列。 这些对或组子序列的数值至少不大于 ~ ~ ~ ~ ~ ; 至少对三角连续的时标没有差异, 这表明共同的当地模式和趋势。 我们首先提出了一个基线算法, 对所有时标进行扫线扫描, 以确定匹配。 然后, 我们提出一个过滤核查技术, 只检查不同时间在明智选择的检查站的候选匹配。 具体地说, 我们引入了两个区块扫描算法, 以发现本地对子和捆包, 分别利用检查站的潜力, 大力挖掘搜索空间。 我们用真实世界和合成数据集对方法进行实验性评估, 显示执行时间按基线的幅度顺序加速。 这份文件已经在第16次空间和时空数据库国际研讨会( SSTD19) 上发表 。