In spite of increased attention on explainable machine learning models, explaining multi-output predictions has not yet been extensively addressed. Methods that use Shapley values to attribute feature contributions to the decision making are one of the most popular approaches to explain local individual and global predictions. By considering each output separately in multi-output tasks, these methods fail to provide complete feature explanations. We propose Shapley Chains to overcome this issue by including label interdependencies in the explanation design process. Shapley Chains assign Shapley values as feature importance scores in multi-output classification using classifier chains, by separating the direct and indirect influence of these feature scores. Compared to existing methods, this approach allows to attribute a more complete feature contribution to the predictions of multi-output classification tasks. We provide a mechanism to distribute the hidden contributions of the outputs with respect to a given chaining order of these outputs. Moreover, we show how our approach can reveal indirect feature contributions missed by existing approaches. Shapley Chains help to emphasize the real learning factors in multi-output applications and allows a better understanding of the flow of information through output interdependencies in synthetic and real-world datasets.
翻译:尽管越来越多的关注被放在可解释的机器学习模型上,但解释多输出预测还没有得到广泛解决。使用Shapley值将特征贡献归因于决策的方法是解释局部个体和全局预测的最流行方法之一。在多输出任务中分别考虑每个输出,这些方法未能提供完整的特征解释。我们提出了Shapley Chains来解决这个问题,通过在解释设计过程中包含标签相互依赖性来分配Shapley值作为多输出分类中的特征重要性得分,使用分类器链来分离这些特征得分的直接和间接影响。与现有方法相比,这种方法允许将更完整的特征贡献属性于多输出分类的预测。我们提供一种机制来分配输出的隐藏贡献,以及如何揭示现有方法错过的间接特征贡献。Shapley Chains有助于强调多输出应用中的实际学习因素,并允许更好地理解输出相互依赖关系中信息的流动,从而应用于合成和现实世界数据集。