Testing whether two graphs come from the same distribution is of interest in many real world scenarios, including brain network analysis. Under the random dot product graph model, the nonparametric hypothesis testing framework consists of embedding the graphs using the adjacency spectral embedding (ASE), followed by aligning the embeddings using the median flip heuristic, and finally applying the nonparametric maximum mean discrepancy (MMD) test to obtain a p-value. Using synthetic data generated from Drosophila brain networks, we show that the median flip heuristic results in an invalid test, and demonstrate that optimal transport Procrustes (OTP) for alignment resolves the invalidity. We further demonstrate that substituting the MMD test with multiscale graph correlation (MGC) test leads to a more powerful test both in synthetic and in simulated data. Lastly, we apply this valid and more powerful test to the right and left hemispheres of the larval Drosophila mushroom body brain networks, and conclude that there is not enough evidence to reject the null hypothesis that the two hemispheres are equally distributed.


翻译:在随机点数产品图表模型下,非参数假设测试框架包括使用相邻光谱嵌入(ASE)嵌入图形,然后使用中位翻动脂质调整嵌入,最后应用非参数最大平均值差异(MMD)测试以获得p-value。我们利用Drosophilla大脑网络生成的合成数据,显示中位翻转超热性结果无效测试,并证明最佳运输质谱(OTP)以对齐解决了无效性。我们进一步证明,以多尺度图形相关性(MGCC)测试取代MMD测试可以在合成和模拟数据中进行更强有力的测试。最后,我们将这一有效、更强大的测试应用到幼虫Droophilia蘑菇脑网络的右半球和左半球,并得出结论,没有足够证据否定两个半球分布均匀的假设。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员