It is hard to look at the universe and not wonder about the meaning, of, well, everything. A natural question is whether what we see is a sign of intelligent design. The antithesis of design would be a random universe or, assuming laws of physics, one whose fundamental physical parameters were randomly selected, but conditioned on life (ourselves) being here to observe it. In unpublished work, the British physicist Dennis Sciama argued that such a randomly selected universe would display a statistical signature. He concluded that a random universe would almost certainly have parameters only just allowing for the possibility of life. Here we consider whether this signature is definitive. We find that with plausible additional assumptions Sciama's signature would appear to reverse: Were our universe random, it could give the false impression of being intelligently designed, with the fundamental constants appearing to be fine-tuned to a strong probability for life to emerge and be maintained.


翻译:很难看宇宙,也不奇怪万物的意义。自然的问题是,我们所看到的是一个智能设计的迹象。设计相对的反面将是随机的宇宙,或者假设物理学定律,其基本物理参数是随机选择的,但以生命(我们自身)在这里观察它为条件。在未出版的著作中,英国物理学家丹尼斯·希亚马认为,这样一个随机选择的宇宙将显示一个统计特征。他的结论是,一个随机的宇宙几乎肯定会有参数,仅允许生命可能性。我们在这里考虑这个签名是否是确定的。我们发现,如果有其他合理的假设,Sciama的签名似乎会相反:如果我们的宇宙是随机的,它可能会给人以智慧设计的错误印象,而基本常数似乎会精确地适应生命的出现和保持的强烈可能性。

0
下载
关闭预览

相关内容

Everything 是一个文件名搜索工具。它小巧免费,支持中文,支持正则表达式,可以通过 HTTP 或 FTP 分享搜索结果。 善用佳软详细介绍: xbeta.info/everything-s
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
27+阅读 · 2021年2月17日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
13+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员