Background: A systematic literature review (SLR) is a methodology used to aggregate all relevant existing evidence to answer a research question of interest. Although crucial, the process used to select primary studies can be arduous, time consuming, and must often be conducted manually. Objective: We propose a novel approach, known as 'Systematic Literature Review based on Visual Text Mining' or simply SLR-VTM, to support the primary study selection activity using visual text mining (VTM) techniques. Method: We conducted a case study to compare the performance and effectiveness of four doctoral students in selecting primary studies manually and using the SLR-VTM approach. To enable the comparison, we also developed a VTM tool that implemented our approach. We hypothesized that students using SLR-VTM would present improved selection performance and effectiveness. Results: Our results show that incorporating VTM in the SLR study selection activity reduced the time spent in this activity and also increased the number of studies correctly included. Conclusions: Our pilot case study presents promising results suggesting that the use of VTM may indeed be beneficial during the study selection activity when performing an SLR.
翻译:系统文献审查(SLR)是用来汇总所有相关现有证据的方法,以解答一个感兴趣的研究问题。虽然关键是,选择初级研究的过程可能是艰巨的、耗时的,而且往往必须手工进行。目标:我们提出一种新颖的方法,称为“基于视觉文字采矿的系统文学审查”或简单的SLR-VTM,以支持使用视觉文字挖掘技术进行初级研究选择活动。方法:我们进行了一项案例研究,比较了四名博士生手工选择初级研究和使用SLR-VTM方法的成绩和效果。为了便于进行比较,我们还开发了一个应用我们方法的VTM工具。我们假设,使用SLR-VTM的学生将提出更好的选择业绩和效果。结果:我们的结果显示,将VTM纳入SLR研究选择活动减少了在这项活动中花费的时间,并增加了正确列入的研究次数。结论:我们的试点案例研究提出了有希望的结果,表明在进行研究选择活动时使用VTM可能确实有益于研究活动。