Unlike Business-to-Consumer e-commerce platforms (e.g., Amazon), inexperienced individual sellers on Consumer-to-Consumer platforms (e.g., eBay) often face significant challenges in setting prices for their second-hand products efficiently. Therefore, numerous studies have been proposed for automating price prediction. However, most of them are based on static regression models, which suffer from poor generalization performance and fail to capture market dynamics (e.g., the price of a used iPhone decreases over time). Inspired by recent breakthroughs in Large Language Models (LLMs), we introduce LLP, the first LLM-based generative framework for second-hand product pricing. LLP first retrieves similar products to better align with the dynamic market change. Afterwards, it leverages the LLMs' nuanced understanding of key pricing information in free-form text to generate accurate price suggestions. To strengthen the LLMs' domain reasoning over retrieved products, we apply a two-stage optimization, supervised fine-tuning (SFT) followed by group relative policy optimization (GRPO), on a dataset built via bidirectional reasoning. Moreover, LLP employs a confidence-based filtering mechanism to reject unreliable price suggestions. Extensive experiments demonstrate that LLP substantially surpasses existing methods while generalizing well to unseen categories. We have successfully deployed LLP on Xianyu\footnote\{Xianyu is China's largest second-hand e-commerce platform.\}, significantly outperforming the previous pricing method. Under the same 30\% product coverage, it raises the static adoption rate (SAR) from 40\% to 72\%, and maintains a strong SAR of 47\% even at 90\% recall.


翻译:与B2C(企业-消费者)电子商务平台(如亚马逊)不同,C2C(消费者-消费者)平台(如eBay)上经验不足的个人卖家在为二手商品高效定价时常常面临重大挑战。因此,已有大量研究致力于实现价格预测的自动化。然而,这些方法大多基于静态回归模型,其泛化性能较差,且难以捕捉市场动态(例如,二手iPhone的价格会随时间下降)。受近期大语言模型(LLMs)突破性进展的启发,我们提出了LLP,首个基于LLM的二手产品定价生成框架。LLP首先检索相似产品,以更好地适应动态的市场变化。随后,它利用LLM对自由文本中关键定价信息的细致理解,生成准确的价格建议。为增强LLM对检索产品的领域推理能力,我们在一个通过双向推理构建的数据集上应用了两阶段优化:监督微调(SFT)和组相对策略优化(GRPO)。此外,LLP采用基于置信度的过滤机制来拒绝不可靠的价格建议。大量实验表明,LLP显著超越了现有方法,并能很好地泛化到未见过的商品类别。我们已在闲鱼(中国最大的二手电子商务平台)上成功部署LLP,其表现显著优于先前的定价方法。在相同的30%商品覆盖率下,它将静态采纳率(SAR)从40%提升至72%,即使在90%召回率下仍能保持47%的强劲SAR。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员