We present a complete algorithm that computes all hypergeometric solutions of homogeneous linear difference equations and rational solutions of parameterized linear difference equations in the setting of $\Pi\Sigma^*$-fields. More generally, we provide a flexible framework for a big class of difference fields that is built by a tower of $\Pi\Sigma^*$-field extensions over a difference field that satisfies certain algorithmic properties. As a consequence one can compute all solutions in terms of indefinite nested sums and products that arise within the components of a parameterized linear difference equation, and one can find all hypergeometric solutions that are defined over the arising sums and products of a homogeneous linear difference equation.


翻译:我们提出了一个完整的算法,用来计算所有单数线性差异方程式的超几何解决方案和在确定$\Pi\Sigma\\$-field时参数线性差异方程式的理性解决方案。更一般地说,我们为一大类差异字段提供了一个灵活的框架,该差异字段是由一个用$\Pi\Sigma\\$-field建造的塔在满足某些算法特性的差异字段上建造的。因此,人们可以用参数线性差异方程式各组成部分中产生的无限期嵌套数和产品来计算所有解决方案,人们可以找到所有针对同线性线性差异方程式产生的数值和产品定义的超几何解决方案。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员