We uncover a close relationship between combinatorial and syntactic proofs for first-order logic (without equality). Whereas syntactic proofs are formalized in a deductive proof system based on inference rules, a combinatorial proof is a syntax-free presentation of a proof that is independent from any set of inference rules. We show that the two proof representations are related via a deep inference decomposition theorem that establishes a new kind of normal form for syntactic proofs. This yields (a) a simple proof of soundness and completeness for first-order combinatorial proofs, and (b) a full completeness theorem: every combinatorial proof is the image of a syntactic proof.
翻译:我们发现一阶逻辑(没有平等)的分类和综合证据之间有着密切的关系。 虽然合成证据在基于推理规则的推理证据系统中正式确定,但组合证据是一种独立于任何一套推理规则的证据的免加税表述。 我们表明,这两种证据的表述是通过深度推论分解为综合证据确立一种新形式的正常形式而联系在一起的。 这就产生了(a) 简单证明第一级组合证据的正确性和完整性,以及(b) 完全完整性的标语:每一种组合证据都是合成证据的形象。