High-resolution image synthesis with diffusion models often suffers from energy instabilities and guidance artifacts that degrade visual quality. We analyze the latent energy landscape during sampling and propose adaptive classifier-free guidance (CFG) schedules that maintain stable energy trajectories. Our approach introduces energy-aware scheduling strategies that modulate guidance strength over time, achieving superior stability scores (0.9998) and consistency metrics (0.9873) compared to fixed-guidance approaches. We demonstrate that DPM++ 2M with linear-decreasing CFG scheduling yields optimal performance, providing sharper, more faithful images while reducing artifacts. Our energy profiling framework serves as a powerful diagnostic tool for understanding and improving diffusion model behavior.


翻译:基于扩散模型的高分辨率图像合成常因能量不稳定性和引导伪影而导致视觉质量下降。本文分析了采样过程中的潜在能量分布,并提出了一种自适应无分类器引导(CFG)调度策略,以维持稳定的能量轨迹。该方法引入了能量感知调度策略,通过随时间调节引导强度,实现了相较于固定引导方法更优的稳定性得分(0.9998)与一致性指标(0.9873)。实验表明,采用线性递减CFG调度的DPM++ 2M算法能获得最佳性能,生成更清晰、更保真的图像,同时减少伪影。本研究的能量剖析框架为理解和改进扩散模型行为提供了有效的诊断工具。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
38+阅读 · 2021年4月16日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员