High-resolution image synthesis with diffusion models often suffers from energy instabilities and guidance artifacts that degrade visual quality. We analyze the latent energy landscape during sampling and propose adaptive classifier-free guidance (CFG) schedules that maintain stable energy trajectories. Our approach introduces energy-aware scheduling strategies that modulate guidance strength over time, achieving superior stability scores (0.9998) and consistency metrics (0.9873) compared to fixed-guidance approaches. We demonstrate that DPM++ 2M with linear-decreasing CFG scheduling yields optimal performance, providing sharper, more faithful images while reducing artifacts. Our energy profiling framework serves as a powerful diagnostic tool for understanding and improving diffusion model behavior.
翻译:基于扩散模型的高分辨率图像合成常因能量不稳定性和引导伪影而导致视觉质量下降。本文分析了采样过程中的潜在能量分布,并提出了一种自适应无分类器引导(CFG)调度策略,以维持稳定的能量轨迹。该方法引入了能量感知调度策略,通过随时间调节引导强度,实现了相较于固定引导方法更优的稳定性得分(0.9998)与一致性指标(0.9873)。实验表明,采用线性递减CFG调度的DPM++ 2M算法能获得最佳性能,生成更清晰、更保真的图像,同时减少伪影。本研究的能量剖析框架为理解和改进扩散模型行为提供了有效的诊断工具。