In this paper, we propose a Differentially Private Stochastic Gradient Push with Compressed communication (termed DP-CSGP) for decentralized learning over directed graphs. Different from existing works, the proposed algorithm is designed to maintain high model utility while ensuring both rigorous differential privacy (DP) guarantees and efficient communication. For general non-convex and smooth objective functions, we show that the proposed algorithm achieves a tight utility bound of $\mathcal{O}\left( \sqrt{d\log \left( \frac{1}δ \right)}/(\sqrt{n}Jε) \right)$ ($J$ and $d$ are the number of local samples and the dimension of decision variables, respectively) with $\left(ε, δ\right)$-DP guarantee for each node, matching that of decentralized counterparts with exact communication. Extensive experiments on benchmark tasks show that, under the same privacy budget, DP-CSGP achieves comparable model accuracy with significantly lower communication cost than existing decentralized counterparts with exact communication.


翻译:本文提出了一种基于压缩通信的差分隐私随机梯度推送算法(简称DP-CSGP),用于有向图上的去中心化学习。与现有工作不同,该算法旨在保持高模型效用的同时,确保严格的差分隐私(DP)保证和高效的通信效率。针对一般的非凸光滑目标函数,我们证明该算法在满足每个节点(ε, δ)-DP保证的前提下,达到紧致的效用界$\mathcal{O}\left( \sqrt{d\log \left( \frac{1}δ \right)}/(\sqrt{n}Jε) \right)$(其中$J$和$d$分别表示本地样本数量和决策变量维度),与采用精确通信的去中心化算法性能相当。在基准任务上的大量实验表明,在相同隐私预算下,DP-CSGP在显著降低通信成本的同时,达到了与现有精确通信去中心化算法相当的模型精度。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员