Opinion and sentiment analysis is a vital task to characterize subjective information in social media posts. In this paper, we present a comprehensive experimental evaluation and comparison with six state-of-the-art methods, from which we have re-implemented one of them. In addition, we investigate different textual and visual feature embeddings that cover different aspects of the content, as well as the recently introduced multimodal CLIP embeddings. Experimental results are presented for two different publicly available benchmark datasets of tweets and corresponding images. In contrast to the evaluation methodology of previous work, we introduce a reproducible and fair evaluation scheme to make results comparable. Finally, we conduct an error analysis to outline the limitations of the methods and possibilities for the future work.
翻译:意见和情绪分析是社会媒体文章主观信息特征的重要任务。本文对六种最先进的方法进行了全面的实验性评估和比较,我们从这些方法中重新采用了其中的一种。此外,我们调查了包含内容不同方面的不同文字和视觉特征嵌入,以及最近引入的多式CLIP嵌入。对两种公开的关于推文和相应图像的基准数据集提出了实验结果。与以往工作的评估方法不同,我们采用了一种可复制的公平评估计划,使结果具有可比性。最后,我们进行了错误分析,以概述未来工作的方法和可能性的局限性。