This paper presents a systematic benchmarking of the model-based microscopic traffic simulator SUMO against state-of-the-art data-driven traffic simulators using large-scale real-world datasets. Using the Waymo Open Motion Dataset (WOMD) and the Waymo Open Sim Agents Challenge (WOSAC), we evaluate SUMO under both short-horizon (8s) and long-horizon (60s) closed-loop simulation settings. To enable scalable evaluation, we develop Waymo2SUMO, an automated pipeline that converts WOMD scenarios into SUMO simulations. On the WOSAC benchmark, SUMO achieves a realism meta metric of 0.653 while requiring fewer than 100 tunable parameters. Extended rollouts show that SUMO maintains low collision and offroad rates and exhibits stronger long-horizon stability than representative data-driven simulators. These results highlight complementary strengths of model-based and data-driven approaches for autonomous driving simulation and benchmarking.
翻译:本文利用大规模真实世界数据集,对基于模型的微观交通模拟器SUMO与最先进的数据驱动交通模拟器进行了系统性基准测试。通过Waymo开放运动数据集(WOMD)和Waymo开放模拟智能体挑战赛(WOSAC),我们在短时域(8秒)和长时域(60秒)闭环模拟设置下对SUMO进行了评估。为实现可扩展的评估,我们开发了Waymo2SUMO自动化流程,可将WOMD场景转换为SUMO模拟。在WOSAC基准测试中,SUMO在仅需不足100个可调参数的情况下实现了0.653的真实性元指标得分。扩展推演表明,SUMO能保持较低的碰撞率和道路偏离率,并比代表性数据驱动模拟器表现出更强的长时域稳定性。这些结果凸显了基于模型与数据驱动方法在自动驾驶模拟与基准测试领域的互补优势。