Ergonomics and human comfort are essential concerns in physical human-robot interaction applications, and common practical methods either fail in estimating the correct posture due to occlusion or suffer from less accurate ergonomics models in their postural optimization methods. Instead, we propose a novel framework for posture estimation, assessment, and optimization for ergonomically intelligent physical human-robot interaction. We show that we can estimate human posture solely from the trajectory of the interacting robot. We propose DULA, a differentiable ergonomics model, and use it in gradient-free postural optimization for physical human-robot interaction tasks such as co-manipulation and teleoperation. We evaluate our framework through human and simulation experiments.
翻译:人类工程学和人类舒适是人体-机器人互动应用中的基本问题,共同实用的方法要么由于封闭性而不能估计正确姿态,要么在其后院优化方法中受到不精确的人类工程学模型的影响。相反,我们提议了一个新的框架,用以估计、评估和优化人体-机器人的姿势,以便进行人性智能物理-机器人互动。我们显示,我们只能从互动机器人的轨迹来估计人类的姿势。我们提议DULA,一个不同的人类工程学模型,并把它用于无梯度的人类机器人互动任务,例如共同操纵和远程合作。我们通过人类和模拟实验来评估我们的框架。