In this paper we introduce Q-Rock, a development cycle for the automated self-exploration and qualification of robot behaviors. With Q-Rock, we suggest a novel, integrative approach to automate robot development processes. Q-Rock combines several machine learning and reasoning techniques to deal with the increasing complexity in the design of robotic systems. The Q-Rock development cycle consists of three complementary processes: (1) automated exploration of capabilities that a given robotic hardware provides, (2) classification and semantic annotation of these capabilities to generate more complex behaviors, and (3) mapping between application requirements and available behaviors. These processes are based on a graph-based representation of a robot's structure, including hardware and software components. A central, scalable knowledge base enables collaboration of robot designers including mechanical, electrical and systems engineers, software developers and machine learning experts. In this paper we formalize Q-Rock's integrative development cycle and highlight its benefits with a proof-of-concept implementation and a use case demonstration.
翻译:在本文中,我们引入了Q-Rock,这是自动自我探索和认证机器人行为的一种发展周期。在Q-Rock中,我们建议对自动机器人开发过程采用新的综合方法。Q-Rock将若干机器学习和推理技术结合起来,以应对机器人系统设计日益复杂的问题。Q-Rock开发周期由三个互补过程组成:(1) 自动探索某个机器人硬件提供的能力,(2) 对这些能力进行分类和语义说明,以产生更复杂的行为,(3) 绘制应用要求和现有行为之间的图象。这些过程以机器人结构的图表为根据,包括硬件和软件组件。一个中央、可扩展的知识基础使机器人设计师,包括机械、电气和系统工程师、软件开发师和机器学习专家之间的合作得以实现。在本文中,我们将Q-Rock的一体化开发周期正式化,并突出其好处,通过验证概念的实施和使用案例演示。