Social choice functions (SCFs) map the preferences of a group of agents over some set of alternatives to a non-empty subset of alternatives. The Gibbard-Satterthwaite theorem has shown that only extremely unattractive single-valued SCFs are strategyproof when there are more than two alternatives. For set-valued SCFs, or so-called social choice correspondences, the situation is less clear. There are miscellaneous - mostly negative - results using a variety of strategyproofness notions and additional requirements. The simple and intuitive notion of Kelly-strategyproofness has turned out to be particularly compelling because it is weak enough to still allow for positive results. For example, the Pareto rule is strategyproof even when preferences are weak, and a number of attractive SCFs (such as the top cycle, the uncovered set, and the essential set) are strategyproof for strict preferences. In this paper, we show that, for weak preferences, only indecisive SCFs can satisfy strategyproofness. In particular, (i) every strategyproof rank-based SCF violates Pareto-optimality, (ii) every strategyproof support-based SCF (which generalize Fishburn's C2 SCFs) that satisfies Pareto-optimality returns at least one most preferred alternative of every voter, and (iii) every strategyproof non-imposing SCF returns a Condorcet loser in at least one profile.
翻译:社会选择功能( 社会选择功能) 映射一组代理商对非空替代品子的偏好。 Gibbard- Satterthwaite 理论显示, 只有极不吸引的单价SFF值在超过两种替代品的情况下才具有战略防守性。 对于定值的SCF, 或所谓的社会选择通信, 情况不那么清楚。 使用各种战略防偏差概念和额外要求, 存在各种( 大多为负的)结果。 简单而直观的Kelly- 战略防偏性概念变得特别迫切, 因为它不够强, 以至于仍然能够取得积极的结果。 例如, Pareto 规则即使在优惠薄弱时, 也具有战略防战略防偏差性, 而一些有吸引力的SCFCF( 如顶级周期、 尚未发现的集集集和基本集) 则有严格的偏差性。 在本文中, 我们显示,由于偏差的偏差性SCFCF, 只有不精确的偏好的SFCF, 才能满足战略的准性。 。 特别是 ( ) 每一种基于战略的SCFCFSCF的最低级支持性最低的S- best- blick( 返回每个S- sl) 的SFS- slal- sl) 的每个的每个战略, 每个战略( 的SB) 的S- slick- slF- s binal- s