In this paper, we propose a theoretically founded sequential strategy for training large-scale Recommender Systems (RS) over implicit feedback, mainly in the form of clicks. The proposed approach consists in minimizing pairwise ranking loss over blocks of consecutive items constituted by a sequence of non-clicked items followed by a clicked one for each user. We present two variants of this strategy where model parameters are updated using either the momentum method or a gradient-based approach. To prevent from updating the parameters for an abnormally high number of clicks over some targeted items (mainly due to bots), we introduce an upper and a lower threshold on the number of updates for each user. These thresholds are estimated over the distribution of the number of blocks in the training set. The thresholds affect the decision of RS and imply a shift over the distribution of items that are shown to the users. Furthermore, we provide a convergence analysis of both algorithms and demonstrate their practical efficiency over six large-scale collections, both regarding different ranking measures and computational time.
翻译:在本文中,我们提出了一个基于理论的顺序战略,以培训大型建议系统(RS),而不是隐含反馈,主要是以点击的形式。拟议办法包括尽量减少连续项目区块的双向排名损失,这些连续项目区块由一系列非点击项目组成,然后为每个用户提供一个点击项目。我们介绍了这一战略的两个变式,其中模型参数利用动力法或梯度法更新。为了防止在一些目标项目(主要由于机器人)上更新异常高点击次数的参数,我们为每个用户的更新数设定了一个上下限。这些阈值是针对培训成套项目块数的分配估计的。阈值影响RS的决定,意味着改变显示给用户的项目分布。此外,我们提供了对两种算法的趋同分析,并展示了在六个大型集集中的实际效率,包括不同等级计量和计算时间。