Modern applications of survival analysis increasingly involve time-dependent covariates, which constitute a form of functional data. Learning from functional data generally involves repeated evaluations of time integrals which is numerically expensive. In this work we propose a lightweight data preprocessing step that transforms functional data into nonfunctional data. Boosting implementations for nonfunctional data can then be used, whereby the required numerical integration comes for free as part of the training phase. We use this to develop BoXHED 2.0, a quantum leap over the tree-boosted hazard package BoXHED 1.0. BoXHED 2.0 extends BoXHED 1.0 to Aalen's multiplicative intensity model, which covers censoring schemes far beyond right-censoring and also supports recurrent events data. It is also massively scalable because of preprocessing and also because it borrows from the core components of XGBoost. BoXHED 2.0 supports the use of GPUs and multicore CPUs, and is available from GitHub: www.github.com/BoXHED.
翻译:现代生存分析应用越来越多地涉及基于时间的共变式,它们构成了一种功能性数据的形式。从功能数据学习通常涉及对时间组成部分的反复评价,而时间组成部分的数值昂贵。在这项工作中,我们提议了将功能数据转换为不功能数据的轻量数据预处理步骤。然后可以使用不功能数据的强化实施,从而将所需的数字整合免费作为培训阶段的一部分。我们用它来开发BoXHED 2.0,这是从树起作用的危险包BoxHED 1.0.BoxHED 2.0向Aalen的多倍增强度模型的飞跃。BoxHED 1.0 延伸至Aalen的多倍增强度模型,该模型涵盖审查计划,远远超出右检查范围,并且也支持经常性事件数据。由于预处理以及从XGBoust的核心组成部分借用,它也可以大规模扩展。BoxHED 2.0支持使用GPUs和多核心CPU,并且可从GitHub:www.github.com/BoXHED获得。