Real-time remote control over wireless is an important-yet-challenging application in 5G and beyond due to its mission-critical nature under limited communication resources. Current solutions hinge on not only utilizing ultra-reliable and low-latency communication (URLLC) links but also predicting future states, which may consume enormous communication resources and struggle with a short prediction time horizon. To fill this void, in this article we propose a novel two-way Koopman autoencoder (AE) approach wherein: 1) a sensing Koopman AE learns to understand the temporal state dynamics and predicts missing packets from a sensor to its remote controller; and 2) a controlling Koopman AE learns to understand the temporal action dynamics and predicts missing packets from the controller to an actuator co-located with the sensor. Specifically, each Koopman AE aims to learn the Koopman operator in the hidden layers while the encoder of the AE aims to project the non-linear dynamics onto a lifted subspace, which is reverted into the original non-linear dynamics by the decoder of the AE. The Koopman operator describes the linearized temporal dynamics, enabling long-term future prediction and coping with missing packets and closed-form optimal control in the lifted subspace. Simulation results corroborate that the proposed approach achieves a 38x lower mean squared control error at 0 dBm signal-to-noise ratio (SNR) than the non-predictive baseline.
翻译:对无线的实时远程控制是5G和5G以上地区一个重要且挑战性强的应用,原因是其通信资源有限,其任务至关重要。当前的解决方案不仅取决于使用超可靠和低纬度通信(URLLC)链接,而且还要预测未来状态,这可能会消耗巨大的通信资源,在短的预测时间范围内挣扎。为了填补这一空白,我们在本篇文章中建议采用一个新的双向Koopman自动编码器(AE)方法,其中:(1) 感测 Koopman AE 学会了解时间状态动态,并预测从传感器到其远程控制器的缺失包;(2) 控制 Koopman AE 学会了解时间动作动态,并预测从控制器到与传感器同地处的操作器缺失包。 具体地说,每个Koopman AE 的目的是在隐藏层中学习Koopman操作器操作器操作器,而AE 提议的编码器的编码是要将非线性动态动态投射到一个提升的子空间上,后者将恢复到一个原非线性动态,由存储器解码式的A-Simmodemodimmodimal laimal laimal-laimal-to thesildimlistildliformailto thesildaldlistildlipal lipaldaldaldal-lipal-lipaldalmadaldaldaldaldaldaldal-madal-madaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal-dal-dal-todaldal-daldaldaldaldaldaldaldaldaldaldal-daldaldal-dal- AS, AS,每个,每个操作,每个操作,每个操作,每个操作操作器操作器操作,每个操作,每个操作,每个Koopal-该操作,每个操作器每个操作器的操作器中,每个Koopman-A,每个Koopman-AO,每个Koopmanmanmanmanmanmanmanmanmanmanmanmanmanmanmanmanmanman-直图中,每个Koopal