In this paper, we propose and investigate an aerial reconfigurable intelligent surface (aerial-RIS)-aided wireless communication system. Specifically, considering practical composite fading channels, we characterize the air-to-ground (A2G) links by Namkagami-m small-scale fading and inverse-Gamma large-scale shadowing. To investigate the delay-limited performance of the proposed system, we derive a tight approximate closed-form expression for the end-to-end outage probability (OP). Next, considering a mobile environment, where performance analysis is intractable, we rely on machine learning-based performance prediction to evaluate the performance of the mobile aerial-RIS-aided system. Specifically, taking into account the three-dimensional (3D) spatial movement of the aerial-RIS, we build a deep neural network (DNN) to accurately predict the OP. We show that: (i) fading and shadowing conditions have strong impact on the OP, (ii) as the number of reflecting elements increases, aerial-RIS achieves higher energy efficiency (EE), and (iii) the aerial-RIS-aided system outperforms conventional relaying systems.
翻译:在本文中,我们提议并调查一个空中重新校正智能表面(航空-RIS)辅助无线通信系统。具体地说,考虑到实用的复合淡化通道,我们用Namkagami-m小规模退缩和反伽马大型影子来描述空对地连接。为了调查拟议系统的延迟性能,我们得出了端到端的断流概率(OP)的紧凑近似封闭式表达式。接下来,考虑到一个移动环境,业绩分析难以解决,我们依靠基于机器的学习性能预测来评价移动的空中-RIS辅助系统的性能。具体地说,考虑到空中-RIS的三维(3D)空间移动,我们建立了一个深神经网络来准确预测OP。我们表明:(一) 淡化和阴影性条件对OP有重大影响,(二) 由于反映要素的数量增加,空中-RIS达到更高的能源效率(EE),以及(三) 空中-RIS系统超过常规中继系统。