Personalized Large Language Models (LLMs) have been shown to be an effective way to create more engaging and enjoyable user-AI interactions. While previous studies have explored using prompts to elicit specific personality traits in LLMs, they have not optimized these prompts to maximize personality expression. To address this limitation, we propose PersonaPulse: Dynamic Profile Optimization for Realistic Personality Expression in LLMs, a framework that leverages LLMs' inherent knowledge of personality traits to iteratively enhance role-play prompts while integrating a situational response benchmark as a scoring tool, ensuring a more realistic and contextually grounded evaluation to guide the optimization process. Quantitative evaluations demonstrate that the prompts generated by PersonaPulse outperform those of prior work, which were designed based on personality descriptions from psychological studies. Additionally, we explore the relationship between model size and personality modeling through extensive experiments. Finally, we find that, for certain personality traits, the extent of personality evocation can be partially controlled by pausing the optimization process. These findings underscore the importance of prompt optimization in shaping personality expression within LLMs, offering valuable insights for future research on adaptive AI interactions.
翻译:个性化大语言模型已被证明是创造更具吸引力和愉悦感的用户-AI交互的有效途径。尽管先前研究探索了使用提示词来激发大语言模型中的特定人格特质,但尚未对这些提示词进行优化以最大化人格表达。为应对这一局限,我们提出了PersonaPulse:面向大语言模型真实人格表达的动态配置文件优化框架。该框架利用大语言模型对人格特质的固有知识,迭代增强角色扮演提示词,同时整合情境响应基准作为评分工具,确保通过更真实且基于情境的评估来指导优化过程。定量评估表明,PersonaPulse生成的提示词优于基于心理学研究人格描述设计的先前工作。此外,我们通过大量实验探索了模型规模与人格建模之间的关系。最后,我们发现对于某些人格特质,人格激发程度可以通过暂停优化过程进行部分控制。这些发现强调了提示词优化在塑造大语言模型人格表达中的重要性,为未来自适应AI交互研究提供了有价值的见解。