We show that for every fixed $k\geq 3$, the problem whether the termination/counter complexity of a given demonic VASS is $\mathcal{O}(n^k)$, $\Omega(n^{k})$, and $\Theta(n^{k})$ is coNP-complete, NP-complete, and DP-complete, respectively. We also classify the complexity of these problems for $k\leq 2$. This shows that the polynomial-time algorithm designed for strongly connected demonic VASS in previous works cannot be extended to the general case. Then, we prove that the same problems for VASS games are PSPACE-complete. Again, we classify the complexity also for $k\leq 2$. Interestingly, tractable subclasses of demonic VASS and VASS games are obtained by bounding certain structural parameters, which opens the way to applications in program analysis despite the presented lower complexity bounds.


翻译:对于每个固定的 $k\geq 3 美元,我们显示,对于每个固定的 $k\ geq 3 美元, 特定恶魔VAS 的终止/ 对抗复杂程度是否为$\ mathcal{O} (n ⁇ k) $, $\\\ k} 和$\ Theta(n ⁇ k) $, 分别为 CNP 完成, NP- 完成, 和 DP- 完成。 我们还将这些问题的复杂性分类为 $k\leq 2 。 这显示, 先前作品中为紧密连接的恶魔 VAS 设计的多边- 时间算法不能扩大到一般情况。 然后, 我们证明 VAS 游戏的相同问题也是 PSPACE 完成的。 有意思的是, 魔鬼 VAS SS 和 VASS 游戏的可移动的子类通过约束某些结构参数来获得。 这为程序分析的应用打开了通道, 尽管显示的复杂度较低限制 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员