The early detection of cancer is a challenging problem in medicine. The blood sera of cancer patients are enriched with heterogeneous secretory lipid bound extracellular vesicles (EVs), which present a complex repertoire of information and biomarkers, representing their cell of origin, that are being currently studied in the field of liquid biopsy and cancer screening. Vibrational spectroscopies provide non-invasive approaches for the assessment of structural and biophysical properties in complex biological samples. In this pilot study, multiple Raman spectroscopy measurements were performed on the EVs extracted from the blood sera of 9 patients consisting of four different cancer subtypes (colorectal cancer, hepatocellular carcinoma, breast cancer and pancreatic cancer) and five healthy patients (controls). FTIR (Fourier Transform Infrared) spectroscopy measurements were performed as a complementary approach to Raman analysis, on two of the four cancer subtypes. The AdaBoost Random Forest Classifier, Decision Trees, and Support Vector Machines (SVM) distinguished the baseline corrected Raman spectra of cancer EVs from those of healthy controls (18 spectra) with a classification accuracy of above 90 percent when reduced to a spectral frequency range of 1800 to 1940 inverse cm and subjected to a 50:50 training: testing split. FTIR classification accuracy on 14 spectra showed an 80 percent classification accuracy. Our findings demonstrate that basic machine learning algorithms are powerful applied intelligence tools to distinguish the complex vibrational spectra of cancer patient EVs from those of healthy patients. These experimental methods hold promise as valid and efficient liquid biopsy for artificial intelligence-assisted early cancer screening.


翻译:癌症的早期检测是医学上的一个挑战性问题。癌症患者的血液阴部通过混杂的秘密脂质脂质外细胞囊肿(EVs)丰富了血液中的癌症患者的血液阴部,这些血液中含有代表其起源细胞的复杂信息和生物标志,目前正在液体生物检查和癌症筛查领域对这些细胞进行研究。活性光谱谱为评估复杂生物样本中的结构性和生物物理特性提供了非侵入性的方法。在这项试点研究中,对从9个患者血液腹部提取的EV进行了多次拉曼分光谱检查,这些病人由四种不同的癌症亚型(染色癌、肝细胞癌癌、乳腺癌和胃癌)和5个健康病人组成,它们代表着一个复杂的信息和生物细胞标志。FTIR(Ferver Infred)的光谱测量为Raman分析提供了一种非侵入性方法,用于评估复杂的生物样本中的两种癌症14个子型。AdaBoost Romic Foral分类、决定树和对精度的精度机器(SVM)的精度测量方法是:在实验室的精度上,这些精度的精度是实验室的精度的精度的精度的精度的精度,其精度的精度的精度的精度,其精度的精度的精度的精度是:在18次的精度的精度值的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度是,其精度的精度的精度的精度的精度值。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
44+阅读 · 2020年12月18日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
121+阅读 · 2019年12月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
国内外泌体领域进展总结(2019年2月)
外泌体之家
4+阅读 · 2019年3月5日
《自然》(20190221出版)一周论文导读
科学网
6+阅读 · 2019年2月23日
【NCB】Théry大牛的最新细胞外囊泡综述
外泌体之家
3+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
VIP会员
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
国内外泌体领域进展总结(2019年2月)
外泌体之家
4+阅读 · 2019年3月5日
《自然》(20190221出版)一周论文导读
科学网
6+阅读 · 2019年2月23日
【NCB】Théry大牛的最新细胞外囊泡综述
外泌体之家
3+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员