Spiking neural networks have shown great promise for the design of low-power sensory-processing and edge-computing hardware platforms. However, implementing on-chip learning algorithms on such architectures is still an open challenge, especially for multi-layer networks that rely on the back-propagation algorithm. In this paper, we present a spike-based learning method that approximates back-propagation using local weight update mechanisms and which is compatible with mixed-signal analog/digital neuromorphic circuits. We introduce a network architecture that enables synaptic weight update mechanisms to back-propagate error signals across layers and present a network that can be trained to distinguish between two spike-based patterns that have identical mean firing rates, but different spike-timings. This work represents a first step towards the design of ultra-low power mixed-signal neuromorphic processing systems with on-chip learning circuits that can be trained to recognize different spatio-temporal patterns of spiking activity (e.g. produced by event-based vision or auditory sensors).
翻译:Spik 神经网络在设计低功率感官处理和边缘计算硬件平台方面显示出巨大的希望,然而,在这种结构上实施芯片学习算法仍是一个公开的挑战,特别是对于依赖后推法算法的多层网络来说,这仍然是一个开放的挑战。在本文中,我们提出了一个基于钉钉式的学习方法,它利用当地重量更新机制与后推法相近,并且与混合信号模拟/数字神经形态电路相兼容。我们引入了一个网络结构,使合成重量更新机制能够用于各层的反偏差信号,并提供一个可以被训练区分两种具有相同平均射击率、但有不同顶峰值模拟的顶点模式的网络。 这项工作是设计超低功率混合发性神经形态处理系统的第一步,在芯片学习电路上可接受培训,以识别不同瞬间瞬间神经形态的活动(例如以事件为基础的视觉或听觉传感器生成的) 。