This technical report proposes an audio captioning system for DCASE 2021 Task 6 audio captioning challenge. Our proposed model is based on an encoder-decoder architecture with bi-directional Gated Recurrent Units (BiGRU) using pretrained audio features and sound event detection. A pretrained neural network (PANN) is used to extract audio features and Word2Vec is selected with the aim of extracting word embeddings from the audio captions. To create semantically meaningful captions, we extract sound events from the audio clips and feed the encoder-decoder architecture with sound events in addition to PANNs features. Our experiments on the Clotho dataset show that our proposed method significantly achieves better results than the challenge baseline model across all evaluation metrics.


翻译:本技术报告提议为DCASE 2021 任务6 音频说明挑战建立一个音频说明系统。 我们提议的模型基于一个有双向Gated 常务单位(BIGRU)的编码器解码器结构,使用预先训练的音频特征和音效事件探测。 一个预先训练的神经网络(PANN)用于提取音频特征,而Word2Vec则被选中,目的是从音频字幕中提取文字嵌入。要创建具有语义意义的字幕,我们从音频剪中提取音频事件,除PANNs功能外,还用声音事件为编码器解码器结构提供材料。 我们在Clootho数据集上的实验显示,我们拟议的方法取得了比所有评价指标的挑战基线模型更好的效果。

0
下载
关闭预览

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
5+阅读 · 2019年5月5日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
5+阅读 · 2019年5月5日
Top
微信扫码咨询专知VIP会员