We validate the recently introduced deep learning classification adapted Delta method by a comparison with the classical Bootstrap. We show that there is a strong linear relationship between the quantified predictive epistemic uncertainty levels obtained from the two methods when applied on two LeNet-based neural network classifiers using the MNIST and CIFAR-10 datasets. Furthermore, we demonstrate that the Delta method offers a five times computation time reduction compared to the Bootstrap.
翻译:我们通过与古典“诱导装置”的比较,验证了最近引入的“深层次学习分类”调整后Delta方法。我们表明,在使用“MNIST”和“CIFAR-10”数据集对两个基于“LeNet”的神经网络分类器应用这两种方法时,从这两种方法中得出的量化的可预期的认知不确定性水平之间存在很强的线性关系。此外,我们证明,“Delta”方法比“诱导装置”减少了5倍的计算时间。