Knowledge selection is the key in knowledge-grounded dialogues (KGD), which aims to select an appropriate knowledge snippet to be used in the utterance based on dialogue history. Previous studies mainly employ the classification approach to classify each candidate snippet as "relevant" or "irrelevant" independently. However, such approaches neglect the interactions between snippets, leading to difficulties in inferring the meaning of snippets. Moreover, they lack modeling of the discourse structure of dialogue-knowledge interactions. We propose a simple yet effective generative approach for knowledge selection, called GenKS. GenKS learns to select snippets by generating their identifiers with a sequence-to-sequence model. GenKS therefore captures intra-knowledge interaction inherently through attention mechanisms. Meanwhile, we devise a hyperlink mechanism to model the dialogue-knowledge interactions explicitly. We conduct experiments on three benchmark datasets, and verify GenKS achieves the best results on both knowledge selection and response generation.
翻译:知识选择是知识驱动对话(KGD)中的重要环节,其目的是根据对话历史从备选知识中选择合适的知识片段以用于话语中。以往的研究主要采用分类方法,将每个备选片段独立分类为“相关”或“不相关”。然而,这种方法忽略了片段之间的交互,导致推断片段的意义困难。此外,它们缺乏对对话-知识交互的话语结构建模。我们提出了一种简单而有效的生成式知识选择方法,称为GenKS。 GenKS使用序列到序列模型生成片段标识符来进行片段选择。因此,GenKS通过注意力机制固有地捕捉内部知识交互。同时,我们设计了一个超链接机制来明确建模对话-知识交互。我们在三个基准数据集上进行了实验,并验证了GenKS在知识选择和响应生成方面均取得了最佳结果。