Existing frameworks converge on the centrality of compression to intelligence but leave underspecified why this process enforces the discovery of causal structure rather than superficial statistical patterns. We introduce a two-level framework to address this gap. The Information-Theoretic Imperative (ITI) establishes that any system persisting in uncertain environments must minimize epistemic entropy through predictive compression: this is the evolutionary "why" linking survival pressure to information-processing demands. The Compression Efficiency Principle (CEP) specifies how efficient compression mechanically selects for generative, causal models through exception-accumulation dynamics, making reality alignment a consequence rather than a contingent achievement. Together, ITI and CEP define a causal chain: from survival pressure to prediction necessity, compression requirement, efficiency optimization, generative structure discovery, and ultimately reality alignment. Each link follows from physical, information-theoretic, or evolutionary constraints, implying that intelligence is the mechanically necessary outcome of persistence in structured environments. This framework yields empirically testable predictions: compression efficiency, measured as approach to the rate-distortion frontier, correlates with out-of-distribution generalization; exception-accumulation rates differentiate causal from correlational models; hierarchical systems exhibit increasing efficiency across abstraction layers; and biological systems demonstrate metabolic costs that track representational complexity. ITI and CEP thereby provide a unified account of convergence across biological, artificial, and multi-scale systems, addressing the epistemic and functional dimensions of intelligence without invoking assumptions about consciousness or subjective experience.


翻译:现有理论框架均认同压缩对智能的核心作用,但未能充分阐明为何这一过程会强制发现因果结构而非表层统计模式。本文提出一个双层框架以填补这一空白。信息论必然性(ITI)指出,任何在不确定环境中持续存在的系统都必须通过预测性压缩最小化认知熵:这是将生存压力与信息处理需求相联系的演化层面的“动因”。压缩效率原则(CEP)则具体阐释了高效压缩如何通过异常累积机制选择生成式因果模型,使得现实对齐成为必然结果而非偶然成就。ITI与CEP共同定义了一条因果链:从生存压力到预测必要性、压缩需求、效率优化、生成结构发现,最终实现现实对齐。每个环节均源自物理、信息论或演化约束,表明智能是结构化环境中持续存在的机械必然产物。该框架产生多项可实证检验的预测:以逼近率失真前沿度量的压缩效率与分布外泛化能力相关;异常累积速率可区分因果模型与相关模型;层级系统在抽象层面呈现递增的效率;生物系统表现出与表征复杂度同步的代谢成本。因此,ITI与CEP为生物、人工及多尺度系统的趋同现象提供了统一解释,在不诉诸意识或主观经验假设的前提下,阐明了智能的认知与功能维度。

0
下载
关闭预览

相关内容

CEP是一种比较新的企业架构(EA,Enterprise Architure)组件。CEP将数据看做一种数据流,基于规则引擎对业务过程中持续产生的各种事件进行复杂的处理,能够实现对连续数据的快速分析处理。可以应用在多种业务场景,如风险分析、程序化交易等。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员