Existing frameworks converge on the centrality of compression to intelligence but leave underspecified why this process enforces the discovery of causal structure rather than superficial statistical patterns. We introduce a two-level framework to address this gap. The Information-Theoretic Imperative (ITI) establishes that any system persisting in uncertain environments must minimize epistemic entropy through predictive compression: this is the evolutionary "why" linking survival pressure to information-processing demands. The Compression Efficiency Principle (CEP) specifies how efficient compression mechanically selects for generative, causal models through exception-accumulation dynamics, making reality alignment a consequence rather than a contingent achievement. Together, ITI and CEP define a causal chain: from survival pressure to prediction necessity, compression requirement, efficiency optimization, generative structure discovery, and ultimately reality alignment. Each link follows from physical, information-theoretic, or evolutionary constraints, implying that intelligence is the mechanically necessary outcome of persistence in structured environments. This framework yields empirically testable predictions: compression efficiency, measured as approach to the rate-distortion frontier, correlates with out-of-distribution generalization; exception-accumulation rates differentiate causal from correlational models; hierarchical systems exhibit increasing efficiency across abstraction layers; and biological systems demonstrate metabolic costs that track representational complexity. ITI and CEP thereby provide a unified account of convergence across biological, artificial, and multi-scale systems, addressing the epistemic and functional dimensions of intelligence without invoking assumptions about consciousness or subjective experience.
翻译:暂无翻译