Requirements Engineering (RE) is essential for developing complex and regulated software projects. Given the challenges in transforming stakeholder inputs into consistent software designs, Qualitative Data Analysis (QDA) provides a systematic approach to handling free-form data. However, traditional QDA methods are time-consuming and heavily reliant on manual effort. In this paper, we explore the use of Large Language Models (LLMs), including GPT-4, Mistral, and LLaMA-2, to improve QDA tasks in RE. Our study evaluates LLMs' performance in inductive (zero-shot) and deductive (one-shot, few-shot) annotation tasks, revealing that GPT-4 achieves substantial agreement with human analysts in deductive settings, with Cohen's Kappa scores exceeding 0.7, while zero-shot performance remains limited. Detailed, context-rich prompts significantly improve annotation accuracy and consistency, particularly in deductive scenarios, and GPT-4 demonstrates high reliability across repeated runs. These findings highlight the potential of LLMs to support QDA in RE by reducing manual effort while maintaining annotation quality. The structured labels automatically provide traceability of requirements and can be directly utilized as classes in domain models, facilitating systematic software design.


翻译:需求工程对于开发复杂且受监管的软件项目至关重要。鉴于将利益相关者输入转化为一致软件设计所面临的挑战,定性数据分析为处理自由形式数据提供了系统化方法。然而,传统的定性数据分析方法耗时且严重依赖人工。本文探讨了使用包括GPT-4、Mistral和LLaMA-2在内的大语言模型来改进需求工程中的定性数据分析任务。我们的研究评估了大语言模型在归纳(零样本)和演绎(单样本、少样本)标注任务中的表现,结果表明GPT-4在演绎设置中与人类分析员达成高度一致,Cohen's Kappa分数超过0.7,而零样本性能仍然有限。详细、上下文丰富的提示显著提高了标注的准确性和一致性,尤其在演绎场景中,且GPT-4在多次运行中表现出高可靠性。这些发现凸显了大语言模型通过减少人工工作量同时保持标注质量来支持需求工程中定性数据分析的潜力。自动生成的结构化标签可直接提供需求的可追溯性,并可作为领域模型中的类别直接使用,从而促进系统化的软件设计。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员