Teamwork in workspace for complex tasks requires diverse communication strategies, but current multi-agent LLM systems lack systematic frameworks for task oriented communication. We introduce Communication to Completion (C2C), a scalable framework that addresses this gap through two key innovations: (1) the Alignment Factor (AF), a novel metric quantifying agent task alignment that directly impacts work efficiency, and (2) a Sequential Action Framework that integrates stepwise execution with intelligent communication decisions. C2C enables agents to make cost aware communication choices, dynamically improving task understanding through targeted interactions. We evaluated C2C on realistic coding workflows across three complexity tiers and team sizes from 5 to 17 agents, comparing against no communication and fixed steps baselines. The results show that C2C reduces the task completion time by about 40% with acceptable communication costs. The framework completes all tasks successfully in standard configurations and maintains effectiveness at scale. C2C establishes both a theoretical foundation for measuring communication effectiveness in multi-agent systems and a practical framework for complex collaborative tasks.
翻译:复杂任务的工作空间团队协作需要多样化的通信策略,但当前的多智能体大语言模型系统缺乏面向任务的系统性通信框架。我们提出“通信至完成”(C2C)这一可扩展框架,通过两项关键创新填补该空白:(1)对齐因子(AF)——一种量化智能体任务对齐度的新型指标,直接影响工作效率;(2)顺序执行框架——将逐步执行与智能通信决策相集成。C2C使智能体能够做出成本感知的通信选择,通过定向交互动态提升任务理解能力。我们在三个复杂度层级、团队规模为5至17个智能体的实际编码工作流中评估C2C,并与无通信基准和固定步骤基准进行对比。结果表明,C2C在可接受的通信成本下将任务完成时间降低约40%。该框架在标准配置下成功完成所有任务,并保持大规模应用的有效性。C2C既为多智能体系统通信效能度量奠定了理论基础,也为复杂协作任务提供了实践框架。